CE 531 | Ders Tanıtım Bilgileri

Dersin Adı
Otomatik Öğrenme
Kodu
Yarıyıl
Teori
(saat/hafta)
Uygulama/Lab
(saat/hafta)
Yerel Kredi
AKTS
CE 531
Güz/Bahar
3
0
3
7.5

Ön-Koşul(lar)
Yok
Dersin Dili
İngilizce
Dersin Türü
Seçmeli
Dersin Düzeyi
Yüksek Lisans
Dersin Koordinatörü
Öğretim Eleman(lar)ı -
Yardımcı(ları) -
Dersin Amacı Otomatik öğrenme, deneyim ile otomatik olarak kendini geliştirebilen bilgisayar programlarının nasıl tasarlanacağı ile ilgilidir. Son yıllarda, sahte kredi kartı işlemlerini bulmaya çalışan veri madenciliği uygulamalarından, halka açık yollarda sürüş yapabilen otonom araçlara kadar değişen bir çok başarılı uygulama tasarlandı. Aynı zamanda, bu alanın temellerini oluşturan teori ve algoritmalarda da önemli ilerlemeler kaydedildi. Bu dersin amacı, otomatik öğrenme alanında kullanılan, en yeni ve etkin algoritmaları gözden geçirmektir. Bu algoritmaların hem teorik özellikleri hem de pratik uygulamaları tartışılacaktır.
Öğrenme Çıktıları Bu dersi başarıyla tamamlayabilen öğrenciler;
  • oldukça geniş bir yelpazede yer alan birçok otomatik öğrenme algoritmasını kolaylıkla tasvir edebilecek.
  • alandaki temel teknik ve algoritmaları irdeleyebilecek ve uygulayabilecek.
  • alandaki farklı algoritma ve teknikleri karşılaştırabilecek.
  • spesifik durumlara uygun otomatik öğrenme algoritmaları tasarlayıp, mevcutları adapte edebilecek.
  • otomatik öğrenme tekniklerinin potansiyel kullanım alanlarını değerlendirebilecektir.
Ders Tanımı Otomatik öğrenme, geçmiş deneyimleriyle otomatik olarak performanslarını iyileştiren bilgisayar programları ile ilgilenir. Yapay zeka, istatistik, bilgi kuramı, biyoloji ve kontrol teorisi gibi bir çok alandan ilham alan otomatik öğrenme dersinde aşağıdaki konular işlenecektir; Konsept öğrenme, Karar ağacı öğrenme, Yapay sinir ağları, Temelli öğrenme, Evrimsel algoritmalar, Destekli öğrenme, Bayes öğrenmesi, Hesapsal öğrenme teorisi.

 



Dersin Kategorisi

Temel Ders
Uzmanlık/Alan Dersleri
Destek Dersleri
İletişim ve Yönetim Becerileri Dersleri
Aktarılabilir Beceri Dersleri

 

HAFTALIK KONULAR VE İLGİLİ ÖN HAZIRLIK ÇALIŞMALARI

Hafta Konular Ön Hazırlık
1 Giriş T. Mitchell, Machine Learning;, McGrawHill, 1997, hardcover ISBN 0-07-042807-7 (Ch. 1)
2 Concept Learning T. Mitchell, Machine Learning;, McGrawHill, 1997, hardcover ISBN 0-07-042807-7 (Ch. 2)
3 Decision Trees T. Mitchell, Machine Learning;, McGrawHill, 1997, hardcover ISBN 0-07-042807-7 (Ch. 3)
4 Artificial Neural Networks T. Mitchell, Machine Learning;, McGrawHill, 1997, hardcover ISBN 0-07-042807-7 (Ch. 4)
5 Bayesian Learning T. Mitchell, Machine Learning;, McGrawHill, 1997, hardcover ISBN 0-07-042807-7 (Ch. 6)
6 Computational Learning Theory T. Mitchell, Machine Learning;, McGrawHill, 1997, hardcover ISBN 0-07-042807-7 (Ch. 7)
7 Instance-Based Learning T. Mitchell, Machine Learning;, McGrawHill, 1997, hardcover ISBN 0-07-042807-7 (Ch. 8)
8 Ara sınav
9 Genetic Algorithms T. Mitchell, Machine Learning;, McGrawHill, 1997, hardcover ISBN 0-07-042807-7 (Ch. 9)
10 Learning Sets of Rules T. Mitchell, Machine Learning;, McGrawHill, 1997, hardcover ISBN 0-07-042807-7 (Ch. 10)
11 Analytical Learning T. Mitchell, Machine Learning;, McGrawHill, 1997, hardcover ISBN 0-07-042807-7 (Ch. 11)
12 Reinforcement Learning T. Mitchell, Machine Learning;, McGrawHill, 1997, hardcover ISBN 0-07-042807-7 (Ch. 13)
13 Discussions, Research and Presentations
14 Discussions, Research and Presentations
15 Özet
16 -

 

Ders Kitabı Yukarıda belirtilen kitap ve ders yansıları
Önerilen Okumalar/Materyaller İlgili Araştırma Makaleleri

 

DEĞERLENDİRME ÖLÇÜTLERİ

Yarıyıl Aktiviteleri Sayı Katkı Payı %
Katılım
Laboratuvar / Uygulama
Arazi Çalışması
Küçük Sınav / Stüdyo Kritiği
Ödev
Sunum / Jüri Önünde Sunum
2
30
Proje
1
40
Seminer/Çalıştay
Sözlü Sınav
Ara Sınav
1
30
Final Sınavı
Toplam

Yarıyıl İçi Çalışmalarının Başarı Notuna Katkısı
4
100
Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı
Toplam

AKTS / İŞ YÜKÜ TABLOSU

Yarıyıl Aktiviteleri Sayı Süre (Saat) İş Yükü
Teorik Ders Saati
(Sınav haftası dahildir: 16 x teorik ders saati)
16
3
48
Laboratuvar / Uygulama Ders Saati
(Sınav haftası dahildir. 16 x uygulama/lab ders saati)
16
Sınıf Dışı Ders Çalışması
15
7
Arazi Çalışması
Küçük Sınav / Stüdyo Kritiği
Ödev
Sunum / Jüri Önünde Sunum
2
6
Proje
1
35
Seminer/Çalıştay
Sözlü Sınav
Ara Sınavlar
1
25
Final Sınavı
    Toplam
225

 

DERSİN ÖĞRENME ÇIKTILARININ PROGRAM YETERLİLİKLERİ İLE İLİŞKİSİ

#
Program Yeterlilikleri / Çıktıları
* Katkı Düzeyi
1
2
3
4
5
1

Matematik, Fen Bilimleri, Biyomühendislik konularında yeterli bilgi birikimine sahiptir; bu alanlardaki kuramsal ve uygulamalı bilgileri çeşitli Biyomühendislik problemlerini modelleme ve çözme amacıyla kullanır.

2

Belirsiz, sınırlı ya da eksik verileri kullanarak, bilimsel yöntemlerle bilgiyi tamamlar ve uygular; ilgili disiplinlere ait bilgileri bir arada kullanır.

3

Kuramsal, deneysel ve modelleme esaslı araştırmaları tasarlar ve uygular; bu süreçte karşılaşılan karmaşık problemleri çözer.

4

Doğa bilimleri ve Biyomühendislik temellerini kullanarak sistem, ekipman veya süreç tasarımı gerçekleştirir.

5

Biyomühendislik alanındaki yeni gelişmeleri takip ve teknolojileri takip eder ve kullanır.

6

Biyomühendislik disiplini içinde ve çok disiplinli takımlarda etkin biçimde çalışır; bireysel çalışma sergiler.

7

Biyomühendislik uygulamalarının sosyal, çevresel, sağlık, güvenlik, hukuk boyutları ile proje yönetimi ve iş hayatı uygulamalarını bilir ve bunların profesyonel iş yaşamına getirdiği kısıtların farkındadır.

8

Biyomühendislik alanı ile ilgili verilerin toplanması, yorumlanması, yayımı ve uygulanması aşamalarında toplumsal, bilimsel ve etik değerlere sahip olur.

9

Biyomühendislik alanı ile ilgili kıstaslara uygun, özgün bir tez/dönem projesi hazırlar.

10

Bir yabancı dili kullanarak Biyomühendislik alanı ile ilgili bilgileri takip eder ve akademik ortamlarda tartışmalara katılır.

11

Edindiği bilgi, beceri ve yetkinlikleri evrensel ve toplumsal amaçları doğrultusunda geliştirir.

12

Biyomühendislik alanında bölgesel ve küresel konuları/sorunları tanımlar, kanıtlara ve araştırmalara dayalı çözüm önerileri geliştirir.

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest