Course Name |
Advanced Topics in IE and OR
|
Code
|
Semester
|
Theory
(hour/week) |
Application/Lab
(hour/week) |
Local Credits
|
ECTS
|
IE 590
|
Fall/Spring
|
3
|
0
|
3
|
7.5
|
Prerequisites |
None
|
|||||
Course Language |
English
|
|||||
Course Type |
Elective
|
|||||
Course Level |
Second Cycle
|
|||||
Mode of Delivery | - | |||||
Teaching Methods and Techniques of the Course | - | |||||
National Occupation Classification | - | |||||
Course Coordinator | ||||||
Course Lecturer(s) | ||||||
Assistant(s) | - |
Course Objectives | The objective of this course is to determine the relative efficiencies of units (decision making units) in the production process or in any sector in the terms of their performance in converting inputs into outputs. The aims of the methodologies in this course are benchmarking, classification, ranking and making projection for these units. At this point, the methods both depent on time/not depent on time and deterministic/stochastic will be investigated. |
Learning Outcomes |
The students who succeeded in this course;
|
Course Description | Definition of efficiency and productivity terms, Introduction to Data Envelopment Analysis (DEA), Presentation of basic DEA models and their applications, Introduction to Stochastic Frontier Analysis (SFA), Presentation of basic SFA model and its applications, Introduction to Malmquist Index (MI), Presentation of MI method and its applications , Introduction to Window Analysis (WA), Presentation of WA method and its applications |
|
Core Courses | |
Major Area Courses | ||
Supportive Courses | ||
Media and Management Skills Courses | ||
Transferable Skill Courses |
Week | Subjects | Related Preparation | Learning Outcome |
1 | Introduction to Modeling and Classification of Models | ||
2 | Modeling applications in GAMS and Pyomo | ||
3 | Modeling applications-Paper Selection for the first presentation | ||
4 | Modeling applications | ||
5 | Introduction to Power Systems | ||
6 | Mathematical models in power systems | ||
7 | Mathematical models in power systems | ||
8 | Presentations-First Paper Presentation | ||
9 | Mathematical models in power systems | ||
10 | Plant Location | ||
11 | National Holiday | ||
12 | Special Probelms | ||
13 | Presentations-Second Paper Presentation | ||
14 | Review of the term | ||
15 | Review of the term | ||
16 | Final Exam |
Course Notes/Textbooks | Course notes |
Suggested Readings/Materials | Instructor notes and lecture slides |
Semester Activities | Number | Weigthing |
Participation | ||
Laboratory / Application | ||
Field Work | ||
Quizzes / Studio Critiques |
2
|
20
|
Portfolio | ||
Homework / Assignments |
2
|
20
|
Presentation / Jury |
1
|
20
|
Project | ||
Seminar / Workshop | ||
Oral Exams | ||
Midterm | ||
Final Exam |
1
|
40
|
Total |
Weighting of Semester Activities on the Final Grade |
5
|
60
|
Weighting of End-of-Semester Activities on the Final Grade |
1
|
40
|
Total |
Semester Activities | Number | Duration (Hours) | Workload |
---|---|---|---|
Theoretical Course Hours (Including exam week: 16 x total hours) |
16
|
3
|
48
|
Laboratory / Application Hours (Including exam week: '.16.' x total hours) |
16
|
0
|
|
Study Hours Out of Class |
14
|
5
|
70
|
Field Work |
0
|
||
Quizzes / Studio Critiques |
2
|
13
|
26
|
Portfolio |
0
|
||
Homework / Assignments |
2
|
15
|
30
|
Presentation / Jury |
1
|
21
|
21
|
Project |
0
|
||
Seminar / Workshop |
0
|
||
Oral Exam |
0
|
||
Midterms |
0
|
||
Final Exam |
1
|
30
|
30
|
Total |
225
|
#
|
PC Sub | Program Competencies/Outcomes |
* Contribution Level
|
||||
1
|
2
|
3
|
4
|
5
|
|||
1 |
Accesses information in breadth and depth by conducting scientific research in Computer Engineering; evaluates, interprets and applies information. |
-
|
-
|
-
|
-
|
-
|
|
2 | Is well-informed about contemporary techniques and methods used in Computer Engineering and their limitations. |
-
|
-
|
-
|
-
|
-
|
|
3 |
Uses scientific methods to complete and apply information from uncertain, limited or incomplete data; can combine and use information from different disciplines. |
-
|
-
|
-
|
-
|
-
|
|
4 | Is informed about new and upcoming applications in the field and learns them whenever necessary. |
-
|
-
|
-
|
-
|
-
|
|
5 |
Defines and formulates problems related to Computer Engineering, develops methods to solve them and uses progressive methods in solutions. |
-
|
-
|
-
|
-
|
-
|
|
6 | Develops novel and/or original methods, designs complex systems or processes and develops progressive/alternative solutions in designs |
-
|
-
|
-
|
-
|
-
|
|
7 |
Designs and implements studies based on theory, experiments and modelling; analyses and resolves the complex problems that arise in this process. |
-
|
-
|
-
|
-
|
-
|
|
8 |
Can work effectively in interdisciplinary teams as well as teams of the same discipline, can lead such teams and can develop approaches for resolving complex situations; can work independently and takes responsibility. |
-
|
-
|
-
|
-
|
-
|
|
9 |
Engages in written and oral communication at least in Level B2 of the European Language Portfolio Global Scale. |
-
|
-
|
-
|
-
|
-
|
|
10 |
Communicates the process and the results of his/her studies in national and international venues systematically, clearly and in written or oral form. |
-
|
-
|
-
|
-
|
-
|
|
11 |
Is knowledgeable about the social, environmental, health, security and law implications of Computer Engineering applications, knows their project management and business applications, and is aware of their limitations in Computer Engineering applications. |
-
|
-
|
-
|
-
|
-
|
|
12 |
Highly regards scientific and ethical values in data collection, interpretation, communication and in every professional activity. |
-
|
-
|
-
|
-
|
-
|
*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest
As Izmir University of Economics transforms into a world-class university, it also raises successful young people with global competence.
More..Izmir University of Economics produces qualified knowledge and competent technologies.
More..Izmir University of Economics sees producing social benefit as its reason for existence.
More..