Course Name |
Advanced Computing Theory
|
Code
|
Semester
|
Theory
(hour/week) |
Application/Lab
(hour/week) |
Local Credits
|
ECTS
|
CE 518
|
Fall/Spring
|
3
|
0
|
3
|
7.5
|
Prerequisites |
None
|
|||||
Course Language |
English
|
|||||
Course Type |
Service Course
|
|||||
Course Level |
Second Cycle
|
|||||
Mode of Delivery | - | |||||
Teaching Methods and Techniques of the Course | - | |||||
National Occupation Classification | - | |||||
Course Coordinator | - | |||||
Course Lecturer(s) | - | |||||
Assistant(s) | - |
Course Objectives | The objective of this course is to provide an in-depth study of the theory of automata and formal languages. This course introduces the classical mathematical models used to analyse computation, including finite state automata, grammars, and Turing Machines. A computer scientist should be able to distinguish between what can be computed and what cannot. This distinction can only be made with a good scientific model of computers and computation. This course introduces the powerful idea of using a mathematical model to analyse computation. This course describes a number of different models of computation which were proposed and analysed over the past century. Many of these models were found to be equivalent, in the sense that they allow exactly the same computations to be carried out. Other models were shown to be less powerful, but simpler to implement, and so useful for some purposes. |
Learning Outcomes |
The students who succeeded in this course;
|
Course Description | The following topics will be included: finite automata, regular expressions and languages, properties of regular languages, context-free grammars and languages, pushdown automata, properties of context-free languages, Turing machines, and undecidability. |
|
Core Courses | |
Major Area Courses | ||
Supportive Courses | ||
Media and Management Skills Courses | ||
Transferable Skill Courses |
Week | Subjects | Related Preparation | Learning Outcome |
1 | Finite Automata | Chapter 2. Introduction to Automata Theory, Languages, and Computation. J.E. Hopcroft, R. Motawa, and J.D. Ullman. Second Edition, ISBN 0-321-21029-8. | |
2 | Regular expressions and its applications | Chapter 3. Introduction to Automata Theory, Languages, and Computation. J.E. Hopcroft, R. Motawa, and J.D. Ullman. Second Edition, ISBN 0-321-21029-8. | |
3 | Algebraic laws for regular expressions | Chapter 3. Introduction to Automata Theory, Languages, and Computation. J.E. Hopcroft, R. Motawa, and J.D. Ullman. Second Edition, ISBN 0-321-21029-8. | |
4 | Pumping lemma for regular languages; closure properties of regular languages | Chapter 4. Introduction to Automata Theory, Languages, and Computation. J.E. Hopcroft, R. Motawa, and J.D. Ullman. Second Edition, ISBN 0-321-21029-8. | |
5 | Decision properties of regular languages; equivalence and minimization of automata | Chapter 4. Introduction to Automata Theory, Languages, and Computation. J.E. Hopcroft, R. Motawa, and J.D. Ullman. Second Edition, ISBN 0-321-21029-8. | |
6 | Context-free grammars; parse tress | Chapter 5. Introduction to Automata Theory, Languages, and Computation. J.E. Hopcroft, R. Motawa, and J.D. Ullman. Second Edition, ISBN 0-321-21029-8. | |
7 | Ambiguity in grammars and languages | Chapter 5. Introduction to Automata Theory, Languages, and Computation. J.E. Hopcroft, R. Motawa, and J.D. Ullman. Second Edition, ISBN 0-321-21029-8 | |
8 | Pushdown automata | Chapter 6. Introduction to Automata Theory, Languages, and Computation. J.E. Hopcroft, R. Motawa, and J.D. Ullman. Second Edition, ISBN 0-321-21029-8. | |
9 | Normal forms for context-free; pumping lemma for context-free languages | Chapter 7. Introduction to Automata Theory, Languages, and Computation. J.E. Hopcroft, R. Motawa, and J.D. Ullman. Second Edition, ISBN 0-321-21029-8. | |
10 | Closure properties of context-free languages; decision properties of context-free languages | Chapter 7. Introduction to Automata Theory, Languages, and Computation. J.E. Hopcroft, R. Motawa, and J.D. Ullman. Second Edition, ISBN 0-321-21029-8. | |
11 | Turing machines | Chapter 8. Introduction to Automata Theory, Languages, and Computation. J.E. Hopcroft, R. Motawa, and J.D. Ullman. Second Edition, ISBN 0-321-21029-8. | |
12 | A language that is not recursively enumerable | Chapter 9. Introduction to Automata Theory, Languages, and Computation. J.E. Hopcroft, R. Motawa, and J.D. Ullman. Second Edition, ISBN 0-321-21029-8. | |
13 | An undecidable problem that is recursively enumerable | Chapter 9. Introduction to Automata Theory, Languages, and Computation. J.E. Hopcroft, R. Motawa, and J.D. Ullman. Second Edition, ISBN 0-321-21029-8. | |
14 | Post’s correspondence problem | Chapter 9. Introduction to Automata Theory, Languages, and Computation. J.E. Hopcroft, R. Motawa, and J.D. Ullman. Second Edition, ISBN 0-321-21029-8. | |
15 | Examples of undecidable problems | Chapter 9. Introduction to Automata Theory, Languages, and Computation. J.E. Hopcroft, R. Motawa, and J.D. Ullman. Second Edition, ISBN 0-321-21029-8. | |
16 | - |
Course Notes/Textbooks | The textbook referenced above and course slides |
Suggested Readings/Materials | Related Research Papers |
Semester Activities | Number | Weigthing |
Participation | ||
Laboratory / Application | ||
Field Work | ||
Quizzes / Studio Critiques | ||
Portfolio | ||
Homework / Assignments | ||
Presentation / Jury |
1
|
30
|
Project | ||
Seminar / Workshop | ||
Oral Exams | ||
Midterm |
1
|
30
|
Final Exam |
1
|
40
|
Total |
Weighting of Semester Activities on the Final Grade |
1
|
60
|
Weighting of End-of-Semester Activities on the Final Grade |
1
|
40
|
Total |
Semester Activities | Number | Duration (Hours) | Workload |
---|---|---|---|
Theoretical Course Hours (Including exam week: 16 x total hours) |
16
|
3
|
48
|
Laboratory / Application Hours (Including exam week: '.16.' x total hours) |
16
|
0
|
|
Study Hours Out of Class |
15
|
9
|
135
|
Field Work |
0
|
||
Quizzes / Studio Critiques |
0
|
||
Portfolio |
0
|
||
Homework / Assignments |
0
|
||
Presentation / Jury |
1
|
5
|
5
|
Project |
0
|
||
Seminar / Workshop |
0
|
||
Oral Exam |
0
|
||
Midterms |
1
|
15
|
15
|
Final Exam |
1
|
22
|
22
|
Total |
225
|
#
|
PC Sub | Program Competencies/Outcomes |
* Contribution Level
|
||||
1
|
2
|
3
|
4
|
5
|
|||
1 | Understands and applies the foundational theories of Computer Engineering in a high level. |
-
|
-
|
-
|
-
|
-
|
|
2 | Possesses a great depth and breadth of knowledge about Computer Engineering including the latest developments. |
-
|
-
|
-
|
-
|
-
|
|
3 | Can reach the latest information in Computer Engineering and possesses a high level of proficiency in the methods and abilities necessary to comprehend it and conduct research with it. |
-
|
-
|
-
|
-
|
-
|
|
4 | Conducts a comprehensive study that introduces innovation to science and technology, develops a new scientific procedure or a technological product/process, or applies a known method in a new field. |
-
|
-
|
-
|
-
|
-
|
|
5 | Independently understands, designs, implements and concludes a unique research process in addition to managing it. |
-
|
-
|
-
|
-
|
-
|
|
6 | Contributes to science and technology literature by publishing the output of his/her academic studies in respectable academic outlets. |
-
|
-
|
-
|
-
|
-
|
|
7 | Interprets scientific, technological, social and cultural developments and relates them to the general public with a commitment to scientific objectivity and ethical responsibility. |
-
|
-
|
-
|
-
|
-
|
|
8 | Performs critical analysis, synthesis and evaluation of ideas and developments in Computer Engineering. |
-
|
-
|
-
|
-
|
-
|
|
9 | Performs verbal and written communications with professionals as well as broader scientific and social communities in Computer Engineering, by using English at least at the European Language Portfolio C1 General level, performs written, oral and visual communications and discussions in a high level. |
-
|
-
|
-
|
-
|
-
|
|
10 | Develops strategies, policies and plans about systems and topics that Computer Engineering uses, and interprets the outcomes. |
-
|
-
|
-
|
-
|
-
|
*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest
As Izmir University of Economics transforms into a world-class university, it also raises successful young people with global competence.
More..Izmir University of Economics produces qualified knowledge and competent technologies.
More..Izmir University of Economics sees producing social benefit as its reason for existence.
More..