Course Name |
Software Evolution and Maintenance
|
Code
|
Semester
|
Theory
(hour/week) |
Application/Lab
(hour/week) |
Local Credits
|
ECTS
|
CE 612
|
Fall/Spring
|
3
|
0
|
3
|
7.5
|
Prerequisites |
None
|
|||||
Course Language |
English
|
|||||
Course Type |
Elective
|
|||||
Course Level |
Third Cycle
|
|||||
Mode of Delivery | - | |||||
Teaching Methods and Techniques of the Course | - | |||||
National Occupation Classification | - | |||||
Course Coordinator | - | |||||
Course Lecturer(s) | ||||||
Assistant(s) | - |
Course Objectives | This course provides doctoral students an in-depth knowledge of the various aspects of software evolution and maintenance. It covers the laws of software evolution and the means to control them, evolution and maintenance models, reengineering, refactoring and reuse techniques and processes for migration of legacy information systems. |
Learning Outcomes |
The students who succeeded in this course;
|
Course Description | This course specifies definitions and concepts, software evolution and maintenance processes, reengineering, refactoring and reuse techniques in software engineering. |
|
Core Courses | |
Major Area Courses |
X
|
|
Supportive Courses | ||
Media and Management Skills Courses | ||
Transferable Skill Courses |
Week | Subjects | Related Preparation | Learning Outcome |
1 | Introduction, IEEE Std 1219 | ||
2 | The context of software evolution and maintenance | Grubb and Takang, ch.1; Tripathy and Naik ch. 1 | |
3 | The maintenance framework. | Grubb and Takang, ch.2; Tripathy and Naik ch. 2; Pressman, ch. 29 | |
4 | Software change | Grubb and Takang, ch.3 | |
5 | Limitations and economic implications to software change | Grubb and Takang, ch.4 | |
6 | Maintenance process | Grubb and Takang, ch.5; ISO/IEC 14764 | |
7 | Program understanding | Grubb and Takang, ch.6 | |
8 | Reverse engineering | Grubb and Takang, ch.7; Tripathy and Naik ch. 4 | |
9 | Midterm exam | ||
10 | Reuse and reusability | Grubb and Takang, ch.8 | |
11 | Management and organizational issues | Grubb and Takang, ch.10 | |
12 | Legacy Information Systems | Tripathy and Naik ch. 5 | |
13 | Software sustainability | ||
14 | Review | ||
15 | Review | ||
16 | Fınal |
Course Notes/Textbooks | |
Suggested Readings/Materials | Grubb P. and Takang A.A., Software Maintenance Concepts and Practice, 2e, World Scientific, 2003. Sommerville I., Software Engineering, 10e, AddisonWesley, 2016. Pressman R.S., Software Engineering: A Practitioners Approach, 7e, McGrawHill, 2010. SWEBOK V3.0, Guide to the Software Engineering Body of Knowledge: 2014, Ed: Bourque P. and Fairley R.E., IEEE, 2014. April, Abran & Dumke, What do you need to know about Software Maintenance? Maintenance and assest management, 2005, vol. 20, no 2, pp. 32-37. Lanubile and Visaggio, Iterative Reengineering to compensate for QuickFix Maintenance, IEEE, 1995, International Conference on Software Maintenance, pp.140-146. Canfora and Cimitile, Software Maintenance, 2000, http://www.compaid.com/caiInternet/ezine/maintenancecanfora.pdf. Jones C., The Economics of Software Maintenance in the Twenty First Century, 2006. Tripathy P. and Naik K., Software evolution and maintenance: a practitioner’s approach, Wiley, 2015. |
Semester Activities | Number | Weigthing |
Participation | ||
Laboratory / Application | ||
Field Work | ||
Quizzes / Studio Critiques | ||
Portfolio | ||
Homework / Assignments |
1
|
25
|
Presentation / Jury | ||
Project | ||
Seminar / Workshop | ||
Oral Exams | ||
Midterm |
1
|
25
|
Final Exam |
1
|
50
|
Total |
Weighting of Semester Activities on the Final Grade |
2
|
60
|
Weighting of End-of-Semester Activities on the Final Grade |
1
|
40
|
Total |
Semester Activities | Number | Duration (Hours) | Workload |
---|---|---|---|
Theoretical Course Hours (Including exam week: 16 x total hours) |
16
|
3
|
48
|
Laboratory / Application Hours (Including exam week: '.16.' x total hours) |
16
|
0
|
|
Study Hours Out of Class |
15
|
4
|
60
|
Field Work |
0
|
||
Quizzes / Studio Critiques |
0
|
||
Portfolio |
0
|
||
Homework / Assignments |
1
|
30
|
30
|
Presentation / Jury |
0
|
||
Project |
0
|
||
Seminar / Workshop |
0
|
||
Oral Exam |
0
|
||
Midterms |
1
|
30
|
30
|
Final Exam |
1
|
57
|
57
|
Total |
225
|
#
|
PC Sub | Program Competencies/Outcomes |
* Contribution Level
|
||||
1
|
2
|
3
|
4
|
5
|
|||
1 | Understands and applies the foundational theories of Computer Engineering in a high level. |
-
|
-
|
-
|
-
|
X
|
|
2 | Possesses a great depth and breadth of knowledge about Computer Engineering including the latest developments. |
-
|
-
|
-
|
-
|
X
|
|
3 | Can reach the latest information in Computer Engineering and possesses a high level of proficiency in the methods and abilities necessary to comprehend it and conduct research with it. |
-
|
-
|
-
|
-
|
X
|
|
4 | Conducts a comprehensive study that introduces innovation to science and technology, develops a new scientific procedure or a technological product/process, or applies a known method in a new field. |
-
|
-
|
-
|
X
|
-
|
|
5 | Independently understands, designs, implements and concludes a unique research process in addition to managing it. |
-
|
-
|
-
|
X
|
-
|
|
6 | Contributes to science and technology literature by publishing the output of his/her academic studies in respectable academic outlets. |
-
|
-
|
-
|
X
|
-
|
|
7 | Interprets scientific, technological, social and cultural developments and relates them to the general public with a commitment to scientific objectivity and ethical responsibility. |
-
|
-
|
-
|
-
|
-
|
|
8 | Performs critical analysis, synthesis and evaluation of ideas and developments in Computer Engineering. |
-
|
-
|
-
|
X
|
-
|
|
9 | Performs verbal and written communications with professionals as well as broader scientific and social communities in Computer Engineering, by using English at least at the European Language Portfolio C1 General level, performs written, oral and visual communications and discussions in a high level. |
-
|
-
|
-
|
X
|
-
|
|
10 | Develops strategies, policies and plans about systems and topics that Computer Engineering uses, and interprets the outcomes. |
-
|
-
|
X
|
-
|
-
|
*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest
As Izmir University of Economics transforms into a world-class university, it also raises successful young people with global competence.
More..Izmir University of Economics produces qualified knowledge and competent technologies.
More..Izmir University of Economics sees producing social benefit as its reason for existence.
More..