Course Name |
Microprocessor Systems
|
Code
|
Semester
|
Theory
(hour/week) |
Application/Lab
(hour/week) |
Local Credits
|
ECTS
|
EEE 561
|
Fall/Spring
|
3
|
0
|
3
|
7.5
|
Prerequisites |
None
|
|||||
Course Language |
English
|
|||||
Course Type |
Elective
|
|||||
Course Level |
Second Cycle
|
|||||
Mode of Delivery | - | |||||
Teaching Methods and Techniques of the Course | - | |||||
National Occupation Classification | - | |||||
Course Coordinator | - | |||||
Course Lecturer(s) | ||||||
Assistant(s) | - |
Course Objectives | The main objective of this course is familarize students with microprocessor architecture, interfaces, and opearting systems. In this course various processors such as Motorola, Intel and ARM and operating systems such as -Linux and PalmOS will be covered. | |||||||||||||||||||||||||||||||||||||||||||||
Learning Outcomes |
|
|||||||||||||||||||||||||||||||||||||||||||||
Course Description | The course will cover hardware and software design methodologies, use of CAD and simulation tools, assemblers, compilers, debuggers, and programmers. Different microprocessor architectures such as Motorola, Intel, and ARM will be discussed and evaluated, as well as Operating Systems such as uC-Linux and PalmOS. Computer interfaces such as USB, PCI, Ethernet, and Bluetooth will also be discussed in detail. |
|
Core Courses | |
Major Area Courses | ||
Supportive Courses | ||
Media and Management Skills Courses | ||
Transferable Skill Courses |
Week | Subjects | Related Preparation | Learning Outcome |
1 | Introduction to Microprocessor Systems | The course slides | |
2 | CPU architecture | The course slides | |
3 | Freescale Architecture | he course slides | |
4 | Intel Architecture | The course slides | |
5 | Computer Organization | The course slides | |
6 | Programming Languages | The course slides | |
7 | Compilers and Debuggers | The course slides | |
8 | Midterm | ||
9 | Ethernet | The course slides | |
10 | USB interface | The course slides | |
11 | PCI interface | The course slides | |
12 | Bluetooth | The course slides | |
13 | Operating Systems | The course slides | |
14 | Uci-Linux | The course slides | |
15 | PalmOS | The course slides | |
16 | Review of the Semester |
Course Notes/Textbooks | The course slides |
Suggested Readings/Materials |
Semester Activities | Number | Weighting | LO 1 | LO 2 | LO 3 | LO 4 |
Participation | ||||||
Laboratory / Application | ||||||
Field Work | ||||||
Quizzes / Studio Critiques | ||||||
Portfolio | ||||||
Homework / Assignments | ||||||
Presentation / Jury |
4
|
20
|
||||
Project | ||||||
Seminar / Workshop |
1
|
40
|
||||
Oral Exams | ||||||
Midterm |
1
|
40
|
||||
Final Exam | ||||||
Total |
Weighting of Semester Activities on the Final Grade |
60
|
|
Weighting of End-of-Semester Activities on the Final Grade |
40
|
|
Total |
Semester Activities | Number | Duration (Hours) | Workload |
---|---|---|---|
Theoretical Course Hours (Including exam week: 16 x total hours) |
16
|
3
|
48
|
Laboratory / Application Hours (Including exam week: '.16.' x total hours) |
16
|
0
|
|
Study Hours Out of Class |
15
|
4
|
60
|
Field Work |
0
|
||
Quizzes / Studio Critiques |
0
|
||
Portfolio |
0
|
||
Homework / Assignments |
0
|
||
Presentation / Jury |
4
|
35
|
140
|
Project |
0
|
||
Seminar / Workshop |
1
|
45
|
45
|
Oral Exam |
0
|
||
Midterms |
1
|
37
|
37
|
Final Exam |
0
|
||
Total |
330
|
#
|
PC Sub | Program Competencies/Outcomes |
* Contribution Level
|
||||
1
|
2
|
3
|
4
|
5
|
|||
1 | Accesses information in breadth and depth by conducting scientific research in Computer Engineering, evaluates, interprets and applies information. |
-
|
-
|
-
|
X
|
-
|
|
2 | Is well-informed about contemporary techniques and methods used in Computer Engineering and their limitations. |
-
|
-
|
-
|
-
|
X
|
|
3 | Uses scientific methods to complete and apply information from uncertain, limited or incomplete data, can combine and use information from different disciplines. |
-
|
-
|
-
|
-
|
X
|
|
4 | Is informed about new and upcoming applications in the field and learns them whenever necessary. |
-
|
-
|
-
|
X
|
-
|
|
5 | Defines and formulates problems related to Computer Engineering, develops methods to solve them and uses progressive methods in solutions. |
-
|
-
|
-
|
X
|
-
|
|
6 | Develops novel and/or original methods, designs complex systems or processes and develops progressive/alternative solutions in designs. |
-
|
-
|
-
|
X
|
-
|
|
7 | Designs and implements studies based on theory, experiments and modelling, analyses and resolves the complex problems that arise in this process. |
-
|
-
|
-
|
X
|
-
|
|
8 | Can work effectively in interdisciplinary teams as well as teams of the same discipline, can lead such teams and can develop approaches for resolving complex situations, can work independently and takes responsibility. |
-
|
-
|
-
|
X
|
-
|
|
9 | Engages in written and oral communication at least in Level B2 of the European Language Portfolio Global Scale. |
-
|
-
|
-
|
X
|
-
|
|
10 | Communicates the process and the results of his/her studies in national and international venues systematically, clearly and in written or oral form. |
-
|
-
|
-
|
X
|
-
|
|
11 | Is knowledgeable about the social, environmental, health, security and law implications of Computer Engineering applications, knows their project management and business applications, and is aware of their limitations in Computer Engineering applications. |
-
|
-
|
-
|
-
|
X
|
|
12 | Highly regards scientific and ethical values in data collection, interpretation, communication and in every professional activity. |
-
|
-
|
X
|
-
|
-
|
*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest
As Izmir University of Economics transforms into a world-class university, it also raises successful young people with global competence.
More..Izmir University of Economics produces qualified knowledge and competent technologies.
More..Izmir University of Economics sees producing social benefit as its reason for existence.
More..