İzmir Ekonomi Üniversitesi
  • ENGLISH

  • LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ

    Bilgisayar Mühendisliği Yüksek Lisans Programı (Tezli)

    IE 530 | Ders Tanıtım Bilgileri

    Dersin Adı
    Evrimsel Algoritmalar
    Kodu
    Yarıyıl
    Teori
    (saat/hafta)
    Uygulama/Lab
    (saat/hafta)
    Yerel Kredi
    AKTS
    IE 530
    Güz/Bahar
    3
    0
    3
    7.5

    Ön-Koşul(lar)
    Yok
    Dersin Dili
    İngilizce
    Dersin Türü
    Seçmeli
    Dersin Düzeyi
    Yüksek Lisans
    Dersin Veriliş Şekli -
    Dersin Öğretim Yöntem ve Teknikleri -
    Ulusal Meslek Sınıflandırma Kodu -
    Dersin Koordinatörü
    Öğretim Eleman(lar)ı
    Yardımcı(ları) -
    Dersin Amacı Bu dersin amacı evrimsel algoritmalar konusunu öğrencilere, özellikle de genetik algoritmalar ve genetik programlama konularına ağırlık vererek öğretmektir. Ayrıca ders öğrencilere arama, eniyileme için evrimsel algoritmalar konusunda pratik deneyim kazandırmayı da amaçlar
    Öğrenme Çıktıları
    #
    İçerik
    PÇ Sub
    * Katkı Düzeyi
    1
    2
    3
    4
    5
    1Temel evrimsel algoritma çeşitlerini, güçlü ve zayıf yönlerini anlama
    2Sürekli, ikili ve kombinatoryal uzayda evrimsel algoritma kullanma becerisi
    3Üç algoritma kullanmada pratik deneyime sahip olmak
    Ders Tanımı Bu ders öğrencilere temel evrimsel algoritmaları öğretir ve çeşitli evrimsel algoritmaların bazıları ile pratik deneyim kazanmalarını sağlar. Öğretilen konular arasında evrimsel algoritmalar ve teorik temelleri, genetic algoritmalar, geentik algoritmalarda seçim ve diğer operatorler ve genetic programlama yer alır.

     



    Dersin Kategorisi

    Temel Ders
    Uzmanlık/Alan Dersleri
    Destek Dersleri
    İletişim ve Yönetim Becerileri Dersleri
    Aktarılabilir Beceri Dersleri

     

    HAFTALIK KONULAR VE İLGİLİ ÖN HAZIRLIK ÇALIŞMALARI

    Hafta Konular Ön Hazırlık Öğrenme Çıktısı
    1 Evrimsel Algoritmalara Giriş
    2 Genetik Algoritmalar Temelleri
    3 Genetik Algoritmalar – Operatörler&Seçim Yöntemleri
    4 Genetik Algoritmalar – Operatörler&Seçim Yöntemleri
    5 Diferansiyel Evrimsel Algoritmalar
    6 Parçacık Sürü Optimizasyonu
    7 ARA SINAV
    8 Yeni Nesil Doğa Esinli Algoritmalar
    9 Sürekli uzayda evrimsel algoritma uygulamaları
    10 İkili uzayda evrimsel algoritma uygulamaları
    11 Kombinatoryal uzayda evrimsel algoritma uygulamaları
    12 Memetik Algoritmalar
    13 Memetik Algoritmalar
    14 Evrimsel Algoritmaların geleceği
    15 Final Hazırlık ve sunumlar
    16 Dönemin gözden geçirilmesi ve sunumlar

     

    Ders Kitabı

    Günther Zäpfel, Roland Braune, Michael Bögl (2010). Metaheuristic Search Concepts A Tutorial with Applications to Production and Logistics. Springer.

    Mitsuo Gen, Runwei Cheng, (2000). Genetic Algorithms and Engineering Optimization. Wiley.

    Önerilen Okumalar/Materyaller

    Zelinka, I. (2015). A survey on evolutionary algorithms dynamics and its complexity–Mutual relations, past, present and future. Swarm and Evolutionary Computation, 25, 2-14.

     

    DEĞERLENDİRME ÖLÇÜTLERİ

    Yarıyıl Aktiviteleri Sayı Katkı Payı % LO 1 LO 2 LO 3
    Katılım
    Laboratuvar / Uygulama
    Arazi Çalışması
    Küçük Sınav / Stüdyo Kritiği
    Portfolyo
    Ödev
    Sunum / Jüri Önünde Sunum
    1
    15
    Proje
    1
    25
    Seminer/Çalıştay
    Sözlü Sınav
    Ara Sınav
    1
    20
    Final Sınavı
    1
    40
    Toplam

    Yarıyıl İçi Çalışmalarının Başarı Notuna Katkısı
    3
    60
    Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı
    1
    40
    Toplam

    AKTS / İŞ YÜKÜ TABLOSU

    Yarıyıl Aktiviteleri Sayı Süre (Saat) İş Yükü
    Teorik Ders Saati
    (Sınav haftası dahildir: 16 x teorik ders saati)
    16
    3
    48
    Laboratuvar / Uygulama Ders Saati
    (Sınav haftası dahildir. 16 x uygulama/lab ders saati)
    16
    0
    Sınıf Dışı Ders Çalışması
    14
    5
    70
    Arazi Çalışması
    0
    Küçük Sınav / Stüdyo Kritiği
    0
    Portfolyo
    0
    Ödev
    0
    Sunum / Jüri Önünde Sunum
    1
    18
    18
    Proje
    1
    34
    34
    Seminer/Çalıştay
    0
    Sözlü Sınav
    0
    Ara Sınavlar
    1
    25
    25
    Final Sınavı
    1
    30
    30
        Toplam
    225

     

    DERSİN ÖĞRENME ÇIKTILARININ PROGRAM YETERLİLİKLERİ İLE İLİŞKİSİ

    #
    PÇ Sub Program Yeterlilikleri / Çıktıları
    * Katkı Düzeyi
    1
    2
    3
    4
    5
    1 Bilgisayar Mühendisliği alanında bilimsel araştırma yaparak bilgiye genişlemesine ve derinlemesine ulaşır, bilgiyi değerlendirir, yorumlar ve uygular.
    -
    -
    -
    -
    -
    2 Bilgisayar Mühendisliği alanında uygulanan güncel teknik ve yöntemler ile bunların kısıtları hakkında kapsamlı bilgi sahibidir.
    -
    -
    -
    -
    -
    3 Belirsiz, sınırlı ya da eksik verileri kullanarak, bilimsel yöntemlerle bilgiyi tamamlar ve uygular; değişik disiplinlere ait bilgileri bir arada kullanabilir.
    -
    -
    -
    -
    -
    4 Mesleğinin yeni ve gelişmekte olan uygulamalarının farkındadır, ihtiyaç duyduğunda bunları inceler ve öğrenir.
    -
    -
    -
    -
    -
    5 Bilgisayar Mühendisliği alanı ile ilgili problemleri tanımlar ve formüle eder, çözmek için yöntem geliştirir ve çözümlerde yenilikçi yöntemler uygular.
    -
    -
    -
    -
    -
    6 Yeni ve/veya özgün fikir ve yöntemler geliştirir; karmaşık sistem veya süreçleri tasarlar ve tasarımlarında yenilikçi/alternatif çözümler geliştirir.
    -
    -
    -
    -
    -
    7 Kuramsal, deneysel ve modelleme esaslı araştırmaları tasarlar ve uygular; bu süreçte karşılaşılan karmaşık problemleri irdeler ve çözümler.
    -
    -
    -
    -
    -
    8 Disiplin içi ve çok disiplinli takımlarda etkin biçimde çalışabilir, bu tür takımlarda liderlik yapabilir ve karmaşık durumlarda çözüm yaklaşımları geliştirebilir; bağımsız çalışabilir ve sorumluluk alır.
    -
    -
    -
    -
    -
    9 Bir yabancı dili en az Avrupa Dil Portföyü B2 Genel Düzeyinde kullanarak, sözlü ve yazılı iletişim kurar.
    -
    -
    -
    -
    -
    10 Çalışmalarının süreç ve sonuçlarını, o alandaki veya alan dışındaki ulusal ve uluslararası ortamlarda sistematik ve açık bir şekilde yazılı ya da sözlü olarak aktarır.
    -
    -
    -
    -
    -
    11 Bilgisayar Mühendisliği uygulamalarının sosyal, çevresel, sağlık, güvenlik, hukuk boyutları ile proje yönetimi ve iş hayatı uygulamalarını bilir ve bunların bilgisayar mühendisliği uygulamalarına getirdiği kısıtların farkındadır.
    -
    -
    -
    -
    -
    12 Verilerin toplanması, yorumlanması, duyurulması aşamalarında ve mesleki tüm etkinliklerde toplumsal, bilimsel ve etik değerleri gözetir.
    -
    -
    -
    -
    -

    *1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest

     


    İzmir Ekonomili'lerin Başarı Hikayeleri

    Sami Eyidilli
    Department of Business Administration
    Profesyonel
    Merve Akça
    Psychology
    Yurtdışı Kariyer
    Aslı Nur TİMUR YORDANOV
    CIU Lead Sustainable Energy Architect
    Profesyonel
    Alper GÜLER
    Qreal 3D Technologies
    Girişimci

    YENİ GÜZELBAHÇE KAMPÜSÜMÜZ

    Detaylar

    KÜRESEL KARİYER

    İzmir Ekonomi Üniversitesi, dünya çapında bir üniversiteye dönüşürken aynı zamanda küresel çapta yetkinliğe sahip başarılı gençler yetiştirir.

    Daha Fazlası..

    BİLİME KATKI

    İzmir Ekonomi Üniversitesi, nitelikli bilgi ve yetkin teknolojiler üretir.

    Daha Fazlası..

    İNSANA DEĞER

    İzmir Ekonomi Üniversitesi, toplumsal fayda üretmeyi varlık nedeni olarak görür.

    Daha Fazlası..

    TOPLUMA FAYDA

    22 yıllık güç ve deneyimini toplumsal çalışmalara aktarmak..

    Daha Fazlası..
    İzmir Ekonomide yapacağın Lisansüstü eğitimle bir adım öndesin