Dersin Adı |
Otonom Araç Tasarımı İlkeleri
|
Kodu
|
Yarıyıl
|
Teori
(saat/hafta) |
Uygulama/Lab
(saat/hafta) |
Yerel Kredi
|
AKTS
|
EEE 527
|
Güz/Bahar
|
3
|
0
|
3
|
7.5
|
Ön-Koşul(lar) |
Yok
|
|||||
Dersin Dili |
İngilizce
|
|||||
Dersin Türü |
Seçmeli
|
|||||
Dersin Düzeyi |
Yüksek Lisans
|
|||||
Dersin Veriliş Şekli | - | |||||
Dersin Öğretim Yöntem ve Teknikleri | - | |||||
Ulusal Meslek Sınıflandırma Kodu | - | |||||
Dersin Koordinatörü | ||||||
Öğretim Eleman(lar)ı | ||||||
Yardımcı(ları) | - |
Dersin Amacı | Bu ders, otonom araçların nasıl çalıştığına ilişkin kavramları tanıtmak ve aşağıdaki konulardaki güncel teknolojileri öğretmektir: Konum ve yön belirleme, sensör füzyonu, haritalama, SLAM, engellerden sakınma, yol şeritlerini ve trafik işaretlerini tanıma, trafik tahmini, yol seviyesi yönlendirme, güvenilirlik ve emniyet. |
Öğrenme Çıktıları |
Bu dersi başarıyla tamamlayabilen öğrenciler;
|
Ders Tanımı | Bu derste, otonom aracın konumlanması, nesne tanıma, yol izleme, sensör füzyonu, haritalama, engellerden sakınma konuları anlatılacak ve Robot İşletim Sistemi (ROS) ortamında, Python tabanlı algılama, hareket planlama ve navigasyon teknikleri öğretilecektir. |
|
Temel Ders | |
Uzmanlık/Alan Dersleri | ||
Destek Dersleri | ||
İletişim ve Yönetim Becerileri Dersleri | ||
Aktarılabilir Beceri Dersleri |
Hafta | Konular | Ön Hazırlık | Öğrenme Çıktısı |
1 | Otonom araçlara giriş, algılama, nesne tanıma ve yol izleme | Shaoshan Liu et. al, “Creating Autonomous Vehicle Systems”, 2018, Chap1 | |
2 | Tekerlerk enkoderleri, GPS, IMU ve LIDAR Kullanımı ile Konumlama ve Haritalama | Shaoshan Liu et. al, “Creating Autonomous Vehicle Systems”, 2018, Chap1 | |
3 | Robot İşletim Sistemine (ROS) Giriş | https://www.udemy.com/autonomous-cars-deep-learning-and-computer-vision-in-python/learn | |
4 | Robot İşletim Sistemine (ROS) Giriş, Riders Bulut Ortamında ROS koşturma | https://www.udemy.com/autonomous-cars-deep-learning-and-computer-vision-in-python/learn | |
5 | ROS mesajlarının oluşturulması ve tanımlanması, yayıncılar, takipçiler ve başlıklar | https://www.udemy.com/autonomous-cars-deep-learning-and-computer-vision-in-python/learn | |
6 | ROS sunucuları, kullanıcı – sunucu uygulamaları | https://www.udemy.com/autonomous-cars-deep-learning-and-computer-vision-in-python/learn | |
7 | Kalman ve Genişletilmiş Kalman Filtreleri, sensör füzyonu | https://www.udemy.com/autonomous-cars-deep-learning-and-computer-vision-in-python/learn | |
8 | ROS kullanımı ile Harita tabanlı Navigasyon: Bir otonom aracın, ROS ortamında, Gazebo ve RVIZ simülatörleri ninkullanımı ile navigasyonu | https://www.udemy.com/autonomous-cars-deep-learning-and-computer-vision-in-python/learn | |
9 | Navigasyon Yığıtı Parametrelerinin Ayarlanması, Araç pozisyonu, 2 ve 3 boyutlu referans eksenlerinde Dönüşümü | https://www.udemy.com/autonomous-cars-deep-learning-and-computer-vision-in-python/learn | |
10 | Trafik Tahmini, Şerit seviyesinde Yol Belirleme | Shaoshan Liu et. al, “Creating Autonomous Vehicle Systems”, 2018, Chap6 | |
11 | Turtlebot3 üzerinde, LIDAR, IMU, Ultrasonik Sensör ve Görüntü İşleme kullanarak Proje Çalışması | Mekatronik Lab’da mevcut TurtleBot3 Burger | |
12 | Turtlebot3 üzerinde, LIDAR, IMU, Ultrasonik Sensör ve Görüntü İşleme kullanarak Proje Çalışması | Mekatronik Lab’da mevcut TurtleBot3 Burger | |
13 | Turtlebot3 üzerinde, LIDAR, IMU, Ultrasonik Sensör ve Görüntü İşleme kullanarak Proje Çalışması | Mekatronik Lab’da mevcut TurtleBot3 Burger | |
14 | Proje Sunumları | ||
15 | Dersin gözden geçirilmesi | ||
16 | Final Sınavı |
Ders Kitabı | 1. Creating Autonomous Vehicle Systems, Shaoshan Liu, Liyun Li, Jie Tang, Shuang Wu, Jean-Luc Gaudiot, Morgan & Claypool Publishers, 2017 |
Önerilen Okumalar/Materyaller | 1. Markus Maurer · J. Christian Gerdes Barbara Lenz · Hermann Winner, Autonomous Driving, Springer open, 2016 |
Yarıyıl Aktiviteleri | Sayı | Katkı Payı % |
Katılım | ||
Laboratuvar / Uygulama | ||
Arazi Çalışması | ||
Küçük Sınav / Stüdyo Kritiği | ||
Portfolyo | ||
Ödev | ||
Sunum / Jüri Önünde Sunum | ||
Proje |
1
|
45
|
Seminer/Çalıştay | ||
Sözlü Sınav | ||
Ara Sınav |
1
|
25
|
Final Sınavı |
1
|
30
|
Toplam |
Yarıyıl İçi Çalışmalarının Başarı Notuna Katkısı |
2
|
70
|
Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı |
1
|
30
|
Toplam |
Yarıyıl Aktiviteleri | Sayı | Süre (Saat) | İş Yükü |
---|---|---|---|
Teorik Ders Saati (Sınav haftası dahildir: 16 x teorik ders saati) |
16
|
3
|
48
|
Laboratuvar / Uygulama Ders Saati (Sınav haftası dahildir. 16 x uygulama/lab ders saati) |
16
|
5
|
80
|
Sınıf Dışı Ders Çalışması |
0
|
||
Arazi Çalışması |
0
|
||
Küçük Sınav / Stüdyo Kritiği |
0
|
||
Portfolyo |
0
|
||
Ödev |
0
|
||
Sunum / Jüri Önünde Sunum |
0
|
||
Proje |
1
|
50
|
50
|
Seminer/Çalıştay |
0
|
||
Sözlü Sınav |
0
|
||
Ara Sınavlar |
1
|
22
|
22
|
Final Sınavı |
1
|
25
|
25
|
Toplam |
225
|
#
|
PÇ Sub | Program Yeterlilikleri / Çıktıları |
* Katkı Düzeyi
|
||||
1
|
2
|
3
|
4
|
5
|
|||
1 | Bilgisayar Mühendisliği temel kuramlarını üst düzeyde anlar ve uygular, |
-
|
-
|
-
|
-
|
-
|
|
2 | Bilgisayar Mühendisliği'nde en son gelişmeler dahil olmak üzere genişlemesine ve derinlemesine bilgi sahibidir, |
-
|
-
|
-
|
-
|
-
|
|
3 | Bilgisayar Mühendisliği'nde en yeni bilgilere ulaşır ve bunları kavrayarak araştırma yapabilmek için gerekli yöntem ve becerilerde üst düzeyde yeterliğe sahiptir, |
-
|
-
|
-
|
-
|
-
|
|
4 | Bilime veya teknolojiye yenilik getiren, yeni bir bilimsel yöntem veya teknolojik ürün/süreç geliştiren ya da bilinen bir yöntemi yeni bir alana uygulayan kapsamlı bir çalışma yapar, |
-
|
-
|
-
|
-
|
-
|
|
5 | Özgün bir araştırma sürecini bağımsız olarak algılar, tasarlar, uygulama ve sonuçlandırır; bu süreci yönetir, |
-
|
-
|
-
|
-
|
-
|
|
6 | Akademik çalışmalarının çıktılarını saygın akademik ortamlarda yayınlayarak bilim ve teknoloji literatürüne katkıda bulunur, |
-
|
-
|
-
|
-
|
-
|
|
7 | Bilimsel, teknolojik, sosyal ve kültürel gelişmeleri değerlendirir ve bilimsel tarafsızlık ve etik sorumluluk bilinciyle topluma aktarır, |
-
|
-
|
-
|
-
|
-
|
|
8 | Bilgisayar Mühendisliği'nde fikirlerin ve gelişmelerin eleştirel analizini, sentezini ve değerlendirmesini yapar, |
-
|
-
|
-
|
-
|
-
|
|
9 | Bilgisayar Mühendisliği'nde çalışanlarla ve daha geniş bilimsel ve sosyal topluluklarla yazılı ve sözlü etkin iletişim kurar, İngilizce'yi en az Avrupa Dil Portföyü C1 Genel Düzeyinde kullanarak ileri düzeyde yazılı, sözlü ve görsel iletişim kurar ve tartışır, |
-
|
-
|
-
|
-
|
-
|
|
10 | Bilgisayar Mühendisliğinin kullanıldığı sistem ve konularla ilgili strateji, politika ve planlar geliştirir ve elde edilen sonuçları yorumlar. |
-
|
-
|
-
|
-
|
-
|
*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest
İzmir Ekonomi Üniversitesi, dünya çapında bir üniversiteye dönüşürken aynı zamanda küresel çapta yetkinliğe sahip başarılı gençler yetiştirir.
Daha Fazlası..İzmir Ekonomi Üniversitesi, nitelikli bilgi ve yetkin teknolojiler üretir.
Daha Fazlası..İzmir Ekonomi Üniversitesi, toplumsal fayda üretmeyi varlık nedeni olarak görür.
Daha Fazlası..