İzmir Ekonomi Üniversitesi
  • ENGLISH

  • LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ

    Bilgisayar Mühendisliği Yüksek Lisans Programı (Tezsiz)

    EEE 527 | Ders Tanıtım Bilgileri

    Dersin Adı
    Otonom Araç Tasarımı İlkeleri
    Kodu
    Yarıyıl
    Teori
    (saat/hafta)
    Uygulama/Lab
    (saat/hafta)
    Yerel Kredi
    AKTS
    EEE 527
    Güz/Bahar
    3
    0
    3
    7.5

    Ön-Koşul(lar)
    Yok
    Dersin Dili
    İngilizce
    Dersin Türü
    Seçmeli
    Dersin Düzeyi
    Yüksek Lisans
    Dersin Veriliş Şekli -
    Dersin Öğretim Yöntem ve Teknikleri -
    Ulusal Meslek Sınıflandırma Kodu -
    Dersin Koordinatörü
    Öğretim Eleman(lar)ı
    Yardımcı(ları) -
    Dersin Amacı Bu ders, otonom araçların nasıl çalıştığına ilişkin kavramları tanıtmak ve aşağıdaki konulardaki güncel teknolojileri öğretmektir: Konum ve yön belirleme, sensör füzyonu, haritalama, SLAM, engellerden sakınma, yol şeritlerini ve trafik işaretlerini tanıma, trafik tahmini, yol seviyesi yönlendirme, güvenilirlik ve emniyet.
    Öğrenme Çıktıları

    Bu dersi başarıyla tamamlayabilen öğrenciler;

    • Otonom araçların bileşenlerini ve çalışma prensiplerini tanımlayabilecektir.
    • Otonom araç donanım ve yazılımını tasarlayabilecektir.
    • LIDAR, IMU, GPS ve diğer sensörleri kullanarak, konumlama ve haritalama yöntemlerini uygulayabilecektir.
    • ROS kullanımı ile, simültane konumlama ve haritalama yazılımları geliştirebilecektir.
    • Laboratuvar ve endüstriyel koşullarda, otonom araçların performans ve güvenilirliğini test edebilecektir.
    Ders Tanımı Bu derste, otonom aracın konumlanması, nesne tanıma, yol izleme, sensör füzyonu, haritalama, engellerden sakınma konuları anlatılacak ve Robot İşletim Sistemi (ROS) ortamında, Python tabanlı algılama, hareket planlama ve navigasyon teknikleri öğretilecektir.

     



    Dersin Kategorisi

    Temel Ders
    Uzmanlık/Alan Dersleri
    Destek Dersleri
    İletişim ve Yönetim Becerileri Dersleri
    Aktarılabilir Beceri Dersleri

     

    HAFTALIK KONULAR VE İLGİLİ ÖN HAZIRLIK ÇALIŞMALARI

    Hafta Konular Ön Hazırlık Öğrenme Çıktısı
    1 Otonom araçlara giriş, algılama, nesne tanıma ve yol izleme Shaoshan Liu et. al, “Creating Autonomous Vehicle Systems”, 2018, Chap1
    2 Tekerlerk enkoderleri, GPS, IMU ve LIDAR Kullanımı ile Konumlama ve Haritalama Shaoshan Liu et. al, “Creating Autonomous Vehicle Systems”, 2018, Chap1
    3 Robot İşletim Sistemine (ROS) Giriş https://www.udemy.com/autonomous-cars-deep-learning-and-computer-vision-in-python/learn
    4 Robot İşletim Sistemine (ROS) Giriş, Riders Bulut Ortamında ROS koşturma https://www.udemy.com/autonomous-cars-deep-learning-and-computer-vision-in-python/learn
    5 ROS mesajlarının oluşturulması ve tanımlanması, yayıncılar, takipçiler ve başlıklar https://www.udemy.com/autonomous-cars-deep-learning-and-computer-vision-in-python/learn
    6 ROS sunucuları, kullanıcı – sunucu uygulamaları https://www.udemy.com/autonomous-cars-deep-learning-and-computer-vision-in-python/learn
    7 Kalman ve Genişletilmiş Kalman Filtreleri, sensör füzyonu https://www.udemy.com/autonomous-cars-deep-learning-and-computer-vision-in-python/learn
    8 ROS kullanımı ile Harita tabanlı Navigasyon: Bir otonom aracın, ROS ortamında, Gazebo ve RVIZ simülatörleri ninkullanımı ile navigasyonu https://www.udemy.com/autonomous-cars-deep-learning-and-computer-vision-in-python/learn
    9 Navigasyon Yığıtı Parametrelerinin Ayarlanması, Araç pozisyonu, 2 ve 3 boyutlu referans eksenlerinde Dönüşümü https://www.udemy.com/autonomous-cars-deep-learning-and-computer-vision-in-python/learn
    10 Trafik Tahmini, Şerit seviyesinde Yol Belirleme Shaoshan Liu et. al, “Creating Autonomous Vehicle Systems”, 2018, Chap6
    11 Turtlebot3 üzerinde, LIDAR, IMU, Ultrasonik Sensör ve Görüntü İşleme kullanarak Proje Çalışması Mekatronik Lab’da mevcut TurtleBot3 Burger
    12 Turtlebot3 üzerinde, LIDAR, IMU, Ultrasonik Sensör ve Görüntü İşleme kullanarak Proje Çalışması Mekatronik Lab’da mevcut TurtleBot3 Burger
    13 Turtlebot3 üzerinde, LIDAR, IMU, Ultrasonik Sensör ve Görüntü İşleme kullanarak Proje Çalışması Mekatronik Lab’da mevcut TurtleBot3 Burger
    14 Proje Sunumları
    15 Dersin gözden geçirilmesi
    16 Final Sınavı

     

    Ders Kitabı

    1.     Creating Autonomous Vehicle Systems, Shaoshan Liu, Liyun Li, Jie Tang, Shuang Wu, Jean-Luc Gaudiot, Morgan & Claypool Publishers, 2017
    2.     Introduction to Driverless Self-Driving Cars, Lance B. EliotLBE Press Publishing, 2018.

    Önerilen Okumalar/Materyaller

    1. Markus Maurer · J. Christian Gerdes Barbara Lenz · Hermann Winner, Autonomous Driving, Springer open, 2016
    2. https://www.udemy.com/autonomous-cars-deep-learning-and-computer-vision-in-python/learn/ 3.http://emanual.robotis.com/docs/en/platform/turtlebot3/overview/

     

    DEĞERLENDİRME ÖLÇÜTLERİ

    Yarıyıl Aktiviteleri Sayı Katkı Payı %
    Katılım
    Laboratuvar / Uygulama
    Arazi Çalışması
    Küçük Sınav / Stüdyo Kritiği
    Portfolyo
    Ödev
    Sunum / Jüri Önünde Sunum
    Proje
    1
    45
    Seminer/Çalıştay
    Sözlü Sınav
    Ara Sınav
    1
    25
    Final Sınavı
    1
    30
    Toplam

    Yarıyıl İçi Çalışmalarının Başarı Notuna Katkısı
    2
    70
    Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı
    1
    30
    Toplam

    AKTS / İŞ YÜKÜ TABLOSU

    Yarıyıl Aktiviteleri Sayı Süre (Saat) İş Yükü
    Teorik Ders Saati
    (Sınav haftası dahildir: 16 x teorik ders saati)
    16
    3
    48
    Laboratuvar / Uygulama Ders Saati
    (Sınav haftası dahildir. 16 x uygulama/lab ders saati)
    16
    5
    80
    Sınıf Dışı Ders Çalışması
    0
    Arazi Çalışması
    0
    Küçük Sınav / Stüdyo Kritiği
    0
    Portfolyo
    0
    Ödev
    0
    Sunum / Jüri Önünde Sunum
    0
    Proje
    1
    50
    50
    Seminer/Çalıştay
    0
    Sözlü Sınav
    0
    Ara Sınavlar
    1
    22
    22
    Final Sınavı
    1
    25
    25
        Toplam
    225

     

    DERSİN ÖĞRENME ÇIKTILARININ PROGRAM YETERLİLİKLERİ İLE İLİŞKİSİ

    #
    PÇ Sub Program Yeterlilikleri / Çıktıları
    * Katkı Düzeyi
    1
    2
    3
    4
    5
    1 Bilgisayar Mühendisliği alanında bilimsel araştırma yaparak bilgiye genişlemesine ve derinlemesine ulaşır, bilgiyi değerlendirir, yorumlar ve uygular.
    -
    -
    -
    -
    -
    2 Bilgisayar Mühendisliği alanında uygulanan güncel teknik ve yöntemler ile bunların kısıtları hakkında kapsamlı bilgi sahibidir.
    -
    -
    -
    -
    -
    3 Belirsiz, sınırlı ya da eksik verileri kullanarak, bilimsel yöntemlerle bilgiyi tamamlar ve uygular, değişik disiplinlere ait bilgileri bir arada kullanabilir.
    -
    -
    -
    -
    -
    4 Mesleğinin yeni ve gelişmekte olan uygulamalarının farkındadır, ihtiyaç duyduğunda bunları inceler ve öğrenir.
    -
    -
    -
    -
    -
    5 Bilgisayar Mühendisliği alanı ile ilgili problemleri tanımlar ve formüle eder, çözmek için yöntem geliştirir ve çözümlerde yenilikçi yöntemler uygular.
    -
    -
    -
    -
    -
    6 Yeni ve/veya özgün fikir ve yöntemler geliştirir, karmaşık sistem veya süreçleri tasarlar ve tasarımlarında yenilikçi/alternatif çözümler geliştirir.
    -
    -
    -
    -
    -
    7 Kuramsal, deneysel ve modelleme esaslı araştırmaları tasarlar ve uygular, bu süreçte karşılaşılan karmaşık problemleri irdeler ve çözümler.
    -
    -
    -
    -
    -
    8 Disiplin içi ve çok disiplinli takımlarda etkin biçimde çalışabilir, bu tür takımlarda liderlik yapabilir ve karmaşık durumlarda çözüm yaklaşımları geliştirebilir, bağımsız çalışabilir ve sorumluluk alır.
    -
    -
    -
    -
    -
    9 Bir yabancı dili en az Avrupa Dil Portföyü B2 Genel Düzeyinde kullanarak, sözlü ve yazılı iletişim kurar.
    -
    -
    -
    -
    -
    10 Çalışmalarının süreç ve sonuçlarını, o alandaki veya alan dışındaki ulusal ve uluslararası ortamlarda sistematik ve açık bir şekilde yazılı ya da sözlü olarak aktarır.
    -
    -
    -
    -
    -
    11 Bilgisayar Mühendisliği uygulamalarının sosyal, çevresel, sağlık, güvenlik, hukuk boyutları ile proje yönetimi ve iş hayatı uygulamalarını bilir ve bunların bilgisayar mühendisliği uygulamalarına getirdiği kısıtların farkındadır.
    -
    -
    -
    -
    -
    12 Verilerin toplanması, yorumlanması, duyurulması aşamalarında ve mesleki tüm etkinliklerde toplumsal, bilimsel ve etik değerleri gözetir.
    -
    -
    -
    -
    -

    *1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest

     


    YENİ GÜZELBAHÇE KAMPÜSÜMÜZ

    Detaylar

    KÜRESEL KARİYER

    İzmir Ekonomi Üniversitesi, dünya çapında bir üniversiteye dönüşürken aynı zamanda küresel çapta yetkinliğe sahip başarılı gençler yetiştirir.

    Daha Fazlası..

    BİLİME KATKI

    İzmir Ekonomi Üniversitesi, nitelikli bilgi ve yetkin teknolojiler üretir.

    Daha Fazlası..

    İNSANA DEĞER

    İzmir Ekonomi Üniversitesi, toplumsal fayda üretmeyi varlık nedeni olarak görür.

    Daha Fazlası..

    TOPLUMA FAYDA

    22 yıllık güç ve deneyimini toplumsal çalışmalara aktarmak..

    Daha Fazlası..
    İzmir Ekonomide yapacağın Lisansüstü eğitimle bir adım öndesin