EEE 511 | Ders Tanıtım Bilgileri

Dersin Adı
İşaret İşleme ve KontrolİçinYapay SinirAğları
Kodu
Yarıyıl
Teori
(saat/hafta)
Uygulama/Lab
(saat/hafta)
Yerel Kredi
AKTS
EEE 511
Güz/Bahar
3
0
3
7.5

Ön-Koşul(lar)
Yok
Dersin Dili
İngilizce
Dersin Türü
Seçmeli
Dersin Düzeyi
Yüksek Lisans
Dersin Koordinatörü
Öğretim Eleman(lar)ı -
Yardımcı(ları) -
Dersin Amacı Dersin amacı öğrencilerin: i)temel yapay sinir ağ modellerini ve öğrenme algoritmalarını bilmelerini ve ii) yapay sinir ağ modellerini ve ilişkin öğrenme algoritmalarını işaret işleme ve kontrol uygulamalarında kullanabilmelerini hedefler
Öğrenme Çıktıları Bu dersi başarıyla tamamlayabilen öğrenciler;
  • Yapaysinirağmodellerinivealgoritmalarınıyapı, kullanımbiçimivekullanımyeriaçılarındansınıflayabilmeli,
  • Bir uygulama için uygun yapay sinir ağ modeli ve öğrenme algoritmasını seçebilmeli
  • Öğrenme algoritmalarını bir yazılım ortamında etkin biçimde koşturabilmeli,
  • Yapay sinir ağ modelleri ve öğrenme algoritmalarını işaret işleme ve kontrol uygulamalarında kullanabilmeli
Ders Tanımı Yapay sinir ağ mimarileri ve öğrenme algoritmaları. Çok katmanlı algılayıcı, radyal taban fonksiyonlu ağlar ve destek vektör makineleri. Regresyon / fonksiyon yaklaşımı, sınıflama ve öbekleme. İşaret işleme, filtreleme ve örüntü tanıma için yapay sinir ağları. Sistem tanılama ve kontrol için yapay sinir ağları.

 



Dersin Kategorisi

Temel Ders
Uzmanlık/Alan Dersleri
X
Destek Dersleri
İletişim ve Yönetim Becerileri Dersleri
Aktarılabilir Beceri Dersleri

 

HAFTALIK KONULAR VE İLGİLİ ÖN HAZIRLIK ÇALIŞMALARI

Hafta Konular Ön Hazırlık
1 Biyolojiksel motivasyon.Tarihsel bakış Introduction. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes.
2 Yapay sinir ağ modellerinin ve öğrenme algoritmalarının sınıflandırılması Introduction. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes.
3 Uyarlanır doğrusal eleman, en küçük kareler algoritması ve yakınsaklık analizi Introduction. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes.
4 Ayrık algılayıcı ve algılayıcı öğrenme kuralı Introduction. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes.
5 Çok-katmanlı algılayıcı, geriye yayılım algoritması ve çeşitleri ile yakınsaklık analizi, aşırı öğrenme Introduction. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes.
6 Radyal tabanlı ağlar, giriş ve giriş-çıkış öbekleme ile tasarım Introduction. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes.
7 Destek vector makineleri, Mercer teoremi, kernel gösterilimi, Lagrange çarpanları Introduction. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes.
8 Genelleme, Vapnik-Chervonenkis boyutu Introduction. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes.
9 1. Arasınav
10 Yapay sinir ağları ile örüntü tanıma, öznitelik çıkarımı, boyut ve veri indirgeme Introduction. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes.
11 Yapay sinir ağları ile 1-boyutlu biyomedikal işaret işleme Introduction. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes.
12 Yapay sinir ağları ile biyomedikal görüntü işleme Introduction. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes.
13 2. Arasınav
14 Yapay sinir ağları ile system tanılama Introduction. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes.
15 Yapay sinir ağ tabanlı kontrolör Introduction. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes.
16 Dönemin gözden geçirilmesi  

 

Ders Kitabı Yukarıda belirtilen kitap ve ders notları
Önerilen Okumalar/Materyaller İlgili Kitaplar ve Araştırma Makaleler

 

DEĞERLENDİRME ÖLÇÜTLERİ

Yarıyıl Aktiviteleri Sayı Katkı Payı %
Katılım
Laboratuvar / Uygulama
Arazi Çalışması
Küçük Sınav / Stüdyo Kritiği
Ödev
5
20
Sunum / Jüri Önünde Sunum
Proje
Seminer/Çalıştay
Sözlü Sınav
Ara Sınav
2
40
Final Sınavı
1
40
Toplam

Yarıyıl İçi Çalışmalarının Başarı Notuna Katkısı
60
Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı
40
Toplam

AKTS / İŞ YÜKÜ TABLOSU

Yarıyıl Aktiviteleri Sayı Süre (Saat) İş Yükü
Teorik Ders Saati
(Sınav haftası dahildir: 16 x teorik ders saati)
16
3
48
Laboratuvar / Uygulama Ders Saati
(Sınav haftası dahildir. 16 x uygulama/lab ders saati)
16
Sınıf Dışı Ders Çalışması
15
2
Arazi Çalışması
Küçük Sınav / Stüdyo Kritiği
Ödev
5
10
Sunum / Jüri Önünde Sunum
Proje
Seminer/Çalıştay
Sözlü Sınav
Ara Sınavlar
2
15
Final Sınavı
1
42
    Toplam
200

 

DERSİN ÖĞRENME ÇIKTILARININ PROGRAM YETERLİLİKLERİ İLE İLİŞKİSİ

#
Program Yeterlilikleri / Çıktıları
* Katkı Düzeyi
1
2
3
4
5
1  Elektrik ve Elektronik Mühendisliği alanında bilimsel araştırma yaparak bilgiye genişlemesine ve derinlemesine ulaşır, bilgiyi değerlendirir, yorumlar ve uygular.
 

X
2 Elektrik ve Elektronik Mühendisliği alanında uygulanan güncel teknik ve yöntemler ile bunların kısıtları hakkında kapsamlı bilgi sahibidir. X
3 Belirsiz, sınırlı ya da eksik verileri kullanarak, bilimsel yöntemlerle bilgiyi tamamlar ve uygular;değişik disiplinlere ait bilgileri bir arada kullanabilir. X
4 Mesleğinin yeni ve gelişmekte olan uygulamalarının farkındadır, ihtiyaç duyduğunda bunları inceler ve öğrenir. X
5 Elektrik ve Elektronik Mühendisliği alanı ile ilgili problemleri tanımlar ve formüle eder, çözmek için yöntem geliştirir ve çözümlerde yenilikçi yöntemler uygular. X
6 Yeni ve/veya özgün fikir ve yöntemler geliştirir; karmaşık sistem veya süreçleri tasarlar ve tasarımlarında yenilikçi/alternatif çözümler geliştirir. X
7 Kuramsal, deneysel ve modelleme esaslı araştırmaları tasarlar ve uygular; bu süreçte karşılaşılan karmaşık problemleri irdeler ve çözümler. X
8 Disiplin içi ve çok disiplinli takımlarda etkin biçimde çalışabilir, bu tür takımlarda liderlik yapabilir ve karmaşık durumlarda çözüm yaklaşımları geliştirebilir; bağımsız çalışabilir ve sorumluluk alır. X
9 Bir yabancı dili en az Avrupa Dil Portföyü B2 Genel Düzeyinde kullanarak, sözlü ve yazılı iletişim kurar.

X
10 Çalışmalarının süreç ve sonuçlarını, o alandaki veya alan dışındaki ulusal ve uluslararası ortamlarda sistematik ve açık bir şekilde yazılı ya da sözlü olarak aktarır.
 

X
11 Elektrik ve Elektronik Mühendisliği uygulamalarının sosyal, çevresel, sağlık, güvenlik, hukuk boyutları ile proje yönetimi ve iş hayatı uygulamalarını bilir ve bunların elektrik ve elektronik mühendisliği uygulamalarına getirdiği kısıtların farkındadır. X
12 Verilerin toplanması, yorumlanması, duyurulması aşamalarında ve mesleki tüm etkinliklerde toplumsal, bilimsel ve etik değerleri gözetir. Araştırma ve yayın etiği ilkelerine uygun davranır. X

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest