Dersin Adı |
İşaret İşleme ve Kontrol İçin Yapay Sinir Ağları
|
Kodu
|
Yarıyıl
|
Teori
(saat/hafta) |
Uygulama/Lab
(saat/hafta) |
Yerel Kredi
|
AKTS
|
EEE 511
|
Güz/Bahar
|
3
|
0
|
3
|
7.5
|
Ön-Koşul(lar) |
Yok
|
|||||
Dersin Dili |
İngilizce
|
|||||
Dersin Türü |
Seçmeli
|
|||||
Dersin Düzeyi |
Yüksek Lisans
|
|||||
Dersin Veriliş Şekli | - | |||||
Dersin Öğretim Yöntem ve Teknikleri | - | |||||
Ulusal Meslek Sınıflandırma Kodu | - | |||||
Dersin Koordinatörü | ||||||
Öğretim Eleman(lar)ı | ||||||
Yardımcı(ları) | - |
Dersin Amacı | Dersin amacı öğrencilerin: i)temel yapay sinir ağ modellerini ve öğrenme algoritmalarını bilmelerini ve ii) yapay sinir ağ modellerini ve ilişkin öğrenme algoritmalarını işaret işleme ve kontrol uygulamalarında kullanabilmelerini hedefler | |||||||||||||||||||||||||||||||||||||||||||||
Öğrenme Çıktıları |
|
|||||||||||||||||||||||||||||||||||||||||||||
Ders Tanımı | Yapay sinir ağ mimarileri ve öğrenme algoritmaları. Çok katmanlı algılayıcı, radyal taban fonksiyonlu ağlar ve destek vektör makineleri. Regresyon / fonksiyon yaklaşımı, sınıflama ve öbekleme. İşaret işleme, filtreleme ve örüntü tanıma için yapay sinir ağları. Sistem tanılama ve kontrol için yapay sinir ağları. |
|
Temel Ders | |
Uzmanlık/Alan Dersleri |
X
|
|
Destek Dersleri | ||
İletişim ve Yönetim Becerileri Dersleri | ||
Aktarılabilir Beceri Dersleri |
Hafta | Konular | Ön Hazırlık | Öğrenme Çıktısı |
1 | Biyolojiksel motivasyon.Tarihsel bakış | Introduction. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes. | |
2 | Yapay sinir ağ modellerinin ve öğrenme algoritmalarının sınıflandırılması | Introduction. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes. | |
3 | Uyarlanır doğrusal eleman, en küçük kareler algoritması ve yakınsaklık analizi | Introduction. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes. | |
4 | Ayrık algılayıcı ve algılayıcı öğrenme kuralı | Introduction. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes. | |
5 | Çok-katmanlı algılayıcı, geriye yayılım algoritması ve çeşitleri ile yakınsaklık analizi, aşırı öğrenme | Introduction. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes. | |
6 | Radyal tabanlı ağlar, giriş ve giriş-çıkış öbekleme ile tasarım | Introduction. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes. | |
7 | Destek vector makineleri, Mercer teoremi, kernel gösterilimi, Lagrange çarpanları | Introduction. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes. | |
8 | Genelleme, Vapnik-Chervonenkis boyutu | Introduction. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes. | |
9 | 1. Arasınav | ||
10 | Yapay sinir ağları ile örüntü tanıma, öznitelik çıkarımı, boyut ve veri indirgeme | Introduction. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes. | |
11 | Yapay sinir ağları ile 1-boyutlu biyomedikal işaret işleme | Introduction. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes. | |
12 | Yapay sinir ağları ile biyomedikal görüntü işleme | Introduction. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes. | |
13 | 2. Arasınav | ||
14 | Yapay sinir ağları ile system tanılama | Introduction. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes. | |
15 | Yapay sinir ağ tabanlı kontrolör | Introduction. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes. | |
16 | Dönemin gözden geçirilmesi |
Ders Kitabı | Yukarıda belirtilen kitap ve ders notları |
Önerilen Okumalar/Materyaller | İlgili Kitaplar ve Araştırma Makaleler |
Yarıyıl Aktiviteleri | Sayı | Katkı Payı % | LO 1 | LO 2 | LO 3 | LO 4 |
Katılım | ||||||
Laboratuvar / Uygulama |
6
|
60
|
||||
Arazi Çalışması | ||||||
Küçük Sınav / Stüdyo Kritiği | ||||||
Portfolyo | ||||||
Ödev | ||||||
Sunum / Jüri Önünde Sunum | ||||||
Proje |
2
|
40
|
||||
Seminer/Çalıştay | ||||||
Sözlü Sınav | ||||||
Ara Sınav | ||||||
Final Sınavı | ||||||
Toplam |
Yarıyıl İçi Çalışmalarının Başarı Notuna Katkısı |
8
|
100
|
Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı | ||
Toplam |
Yarıyıl Aktiviteleri | Sayı | Süre (Saat) | İş Yükü |
---|---|---|---|
Teorik Ders Saati (Sınav haftası dahildir: 16 x teorik ders saati) |
16
|
3
|
48
|
Laboratuvar / Uygulama Ders Saati (Sınav haftası dahildir. 16 x uygulama/lab ders saati) |
16
|
2
|
32
|
Sınıf Dışı Ders Çalışması |
15
|
4
|
60
|
Arazi Çalışması |
0
|
||
Küçük Sınav / Stüdyo Kritiği |
0
|
||
Portfolyo |
0
|
||
Ödev |
0
|
||
Sunum / Jüri Önünde Sunum |
0
|
||
Proje |
2
|
42
|
84
|
Seminer/Çalıştay |
0
|
||
Sözlü Sınav |
0
|
||
Ara Sınavlar |
0
|
||
Final Sınavı |
0
|
||
Toplam |
224
|
#
|
PÇ Sub | Program Yeterlilikleri / Çıktıları |
* Katkı Düzeyi
|
||||
1
|
2
|
3
|
4
|
5
|
|||
1 |
Elektrik ve Elektronik Mühendisliği alanında bilimsel araştırma yaparak bilgiye genişlemesine ve derinlemesine ulaşır, bilgiyi değerlendirir, yorumlar ve uygular. |
-
|
-
|
X
|
-
|
-
|
|
2 | Elektrik ve Elektronik Mühendisliği alanında uygulanan güncel teknik ve yöntemler ile bunların kısıtları hakkında kapsamlı bilgi sahibidir. |
-
|
-
|
-
|
X
|
-
|
|
3 | Belirsiz, sınırlı ya da eksik verileri kullanarak, bilimsel yöntemlerle bilgiyi tamamlar ve uygular;değişik disiplinlere ait bilgileri bir arada kullanabilir. |
-
|
-
|
-
|
-
|
X
|
|
4 | Mesleğinin yeni ve gelişmekte olan uygulamalarının farkındadır, ihtiyaç duyduğunda bunları inceler ve öğrenir. |
-
|
-
|
-
|
X
|
-
|
|
5 | Elektrik ve Elektronik Mühendisliği alanı ile ilgili problemleri tanımlar ve formüle eder, çözmek için yöntem geliştirir ve çözümlerde yenilikçi yöntemler uygular. |
-
|
-
|
-
|
X
|
-
|
|
6 | Yeni ve/veya özgün fikir ve yöntemler geliştirir; karmaşık sistem veya süreçleri tasarlar ve tasarımlarında yenilikçi/alternatif çözümler geliştirir. |
-
|
-
|
-
|
X
|
-
|
|
7 | Kuramsal, deneysel ve modelleme esaslı araştırmaları tasarlar ve uygular; bu süreçte karşılaşılan karmaşık problemleri irdeler ve çözümler. |
-
|
-
|
X
|
-
|
-
|
|
8 | Disiplin içi ve çok disiplinli takımlarda etkin biçimde çalışabilir, bu tür takımlarda liderlik yapabilir ve karmaşık durumlarda çözüm yaklaşımları geliştirebilir; bağımsız çalışabilir ve sorumluluk alır. |
-
|
-
|
-
|
X
|
-
|
|
9 |
Bir yabancı dili en az Avrupa Dil Portföyü B2 Genel Düzeyinde kullanarak, sözlü ve yazılı iletişim kurar. |
-
|
-
|
-
|
X
|
-
|
|
10 |
Çalışmalarının süreç ve sonuçlarını, o alandaki veya alan dışındaki ulusal ve uluslararası ortamlarda sistematik ve açık bir şekilde yazılı ya da sözlü olarak aktarır. |
-
|
-
|
X
|
-
|
-
|
|
11 | Elektrik ve Elektronik Mühendisliği uygulamalarının sosyal, çevresel, sağlık, güvenlik, hukuk boyutları ile proje yönetimi ve iş hayatı uygulamalarını bilir ve bunların elektrik ve elektronik mühendisliği uygulamalarına getirdiği kısıtların farkındadır. |
-
|
-
|
X
|
-
|
-
|
|
12 | Verilerin toplanması, yorumlanması, duyurulması aşamalarında ve mesleki tüm etkinliklerde toplumsal, bilimsel ve etik değerleri gözetir. Araştırma ve yayın etiği ilkelerine uygun davranır. |
-
|
-
|
X
|
-
|
-
|
*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest
İzmir Ekonomi Üniversitesi, dünya çapında bir üniversiteye dönüşürken aynı zamanda küresel çapta yetkinliğe sahip başarılı gençler yetiştirir.
Daha Fazlası..İzmir Ekonomi Üniversitesi, nitelikli bilgi ve yetkin teknolojiler üretir.
Daha Fazlası..İzmir Ekonomi Üniversitesi, toplumsal fayda üretmeyi varlık nedeni olarak görür.
Daha Fazlası..