EEE 542 | Ders Tanıtım Bilgileri

Dersin Adı
Sezim ve Kestirim Kuramı
Kodu
Yarıyıl
Teori
(saat/hafta)
Uygulama/Lab
(saat/hafta)
Yerel Kredi
AKTS
EEE 542
Güz/Bahar
3
0
3
7.5

Ön-Koşul(lar)
Yok
Dersin Dili
İngilizce
Dersin Türü
Seçmeli
Dersin Düzeyi
Yüksek Lisans
Dersin Koordinatörü -
Öğretim Eleman(lar)ı
Yardımcı(ları) -
Dersin Amacı Bu ders, sezim ve kestirim kuramına girişi yüksek lisans seviyesinde öğretmeyi amaçlamaktadır. Dersin içeriğinde Gauss-Markov süreçleri ve stokastik türevsel denklemler, Bayes kestirim kuramı, Maksimum olasılık, doğrusal minimum sapma, enküçük-kareler kestirimleri, Kestiricilerin özellikleri, Hata analizi, Doğrusal sistemler için durum tahmini, Kalman-Bucy ve Wiener süzgeçleri, Tesviye ve önkestirim yöntemleri, Doğrusal olmayan kestirim, Süzgeç uygulamaları, Haberleşme, kontrol, sistem tanıma ve biyomedikal mühendisliği uygulamaları bulunmaktadır.
Öğrenme Çıktıları Bu dersi başarıyla tamamlayabilen öğrenciler;
  • bir parametrenin enbüyük olabilirlik, enbüyük sonsal olasılık ve enküçük- kareler kestirimlerinin kullanımı ve tartışmasını öğrenecek,
  • Karhunen-Loeve açılımını uygulamayı öğrenecek,
  • doğrusal kestirim problemlerini çözmek için Wiener ve Kalman süzgeçleri uygulamayı öğrenecek,
  • karar verme ve kestirim sistemlerinin performansını değerlendirebilecek,
  • çeşitli sezim ve kestirim algoritmalarını Matlab simulasyon yazılımını kullanarak tasarlayabilecek ve uygulayabileceklerdir.
Ders Tanımı Gauss-Markov süreçleri ve stokastik türevsel denklemler, Bayes kestirim kuramı, Maksimum olasılık, doğrusal minimum sapma, enküçük-kareler kestirimleri, Kestiricilerin özellikleri, Hata analizi, Doğrusal sistemler için durum tahmini, Kalman-Bucy ve Wiener süzgeçleri, Tesviye ve önkestirim yöntemleri, Doğrusal olmayan kestirim, Süzgeç uygulamaları, Haberleşme, kontrol, sistem tanıma ve biyomedikal mühendisliği uygulamaları.

 



Dersin Kategorisi

Temel Ders
Uzmanlık/Alan Dersleri
X
Destek Dersleri
İletişim ve Yönetim Becerileri Dersleri
Aktarılabilir Beceri Dersleri

 

HAFTALIK KONULAR VE İLGİLİ ÖN HAZIRLIK ÇALIŞMALARI

Hafta Konular Ön Hazırlık
1 Giriş, Olasılık, Rasgele Vektörler, Vektör Uzayları Lecture notes
2 Sezim Kuramı, Karar Kuramı ve Hipotez Testi Lecture notes
3 Sezim Kuramı, Karar Kuramı ve Hipotez Testi Lecture notes
4 Sezim Kuramı, Karar Kuramı ve Hipotez Testi Lecture notes
5 Parametre Kestirimi Lecture notes
6 Maksimum Olabilirlik Kestirimi Lecture notes
7 Stokastik Süreçler ve Sistemler Lecture notes
8 Ara sınav
9 Karhunen-Loeve ve Örneklenmiş İşaret Açılımları Lecture notes
10 Dalga Şekilleri Gözlemlerinden Sezim ve Kestirim Lecture notes
11 Wiener ve Kalman Süzgeçleri Lecture notes
12 İleri Konular Lecture notes
13 Sınıf-içi Sunumlar
14 Sınıf-içi Sunumlar
15 Sınıf-içi Sunumlar
16 Dönemin gözden geçirilmesi  

 

Ders Kitabı Fundamentals of Statistical Signal Processing, Volume 1: Estimation Theory, Steven Kay, 1993. ISBN 0-13-345711-7 Fundamentals of Statistical Signal Processing, Volume 2: Detection Theory, Steven Kay, 1998. ISBN 0-13-504135-X
Önerilen Okumalar/Materyaller İlgili Araştırma Makaleleri

 

DEĞERLENDİRME ÖLÇÜTLERİ

Yarıyıl Aktiviteleri Sayı Katkı Payı %
Katılım
Laboratuvar / Uygulama
Arazi Çalışması
Küçük Sınav / Stüdyo Kritiği
Ödev
Sunum / Jüri Önünde Sunum
1
20
Proje
1
40
Seminer/Çalıştay
Sözlü Sınav
Ara Sınav
Final Sınavı
Toplam

Yarıyıl İçi Çalışmalarının Başarı Notuna Katkısı
60
Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı
40
Toplam

AKTS / İŞ YÜKÜ TABLOSU

Yarıyıl Aktiviteleri Sayı Süre (Saat) İş Yükü
Teorik Ders Saati
(Sınav haftası dahildir: 16 x teorik ders saati)
16
3
48
Laboratuvar / Uygulama Ders Saati
(Sınav haftası dahildir. 16 x uygulama/lab ders saati)
16
Sınıf Dışı Ders Çalışması
15
4
Arazi Çalışması
Küçük Sınav / Stüdyo Kritiği
Ödev
Sunum / Jüri Önünde Sunum
1
30
Proje
1
45
Seminer/Çalıştay
Sözlü Sınav
Ara Sınavlar
Final Sınavı
    Toplam
183

 

DERSİN ÖĞRENME ÇIKTILARININ PROGRAM YETERLİLİKLERİ İLE İLİŞKİSİ

#
Program Yeterlilikleri / Çıktıları
* Katkı Düzeyi
1
2
3
4
5
1  Elektrik ve Elektronik Mühendisliği alanında bilimsel araştırma yaparak bilgiye genişlemesine ve derinlemesine ulaşır, bilgiyi değerlendirir, yorumlar ve uygular.
 

X
2 Elektrik ve Elektronik Mühendisliği alanında uygulanan güncel teknik ve yöntemler ile bunların kısıtları hakkında kapsamlı bilgi sahibidir. X
3 Belirsiz, sınırlı ya da eksik verileri kullanarak, bilimsel yöntemlerle bilgiyi tamamlar ve uygular;değişik disiplinlere ait bilgileri bir arada kullanabilir. X
4 Mesleğinin yeni ve gelişmekte olan uygulamalarının farkındadır, ihtiyaç duyduğunda bunları inceler ve öğrenir. X
5 Elektrik ve Elektronik Mühendisliği alanı ile ilgili problemleri tanımlar ve formüle eder, çözmek için yöntem geliştirir ve çözümlerde yenilikçi yöntemler uygular. X
6 Yeni ve/veya özgün fikir ve yöntemler geliştirir; karmaşık sistem veya süreçleri tasarlar ve tasarımlarında yenilikçi/alternatif çözümler geliştirir. X
7 Kuramsal, deneysel ve modelleme esaslı araştırmaları tasarlar ve uygular; bu süreçte karşılaşılan karmaşık problemleri irdeler ve çözümler. X
8 Disiplin içi ve çok disiplinli takımlarda etkin biçimde çalışabilir, bu tür takımlarda liderlik yapabilir ve karmaşık durumlarda çözüm yaklaşımları geliştirebilir; bağımsız çalışabilir ve sorumluluk alır. X
9 Bir yabancı dili en az Avrupa Dil Portföyü B2 Genel Düzeyinde kullanarak, sözlü ve yazılı iletişim kurar.

X
10 Çalışmalarının süreç ve sonuçlarını, o alandaki veya alan dışındaki ulusal ve uluslararası ortamlarda sistematik ve açık bir şekilde yazılı ya da sözlü olarak aktarır.
 

X
11 Elektrik ve Elektronik Mühendisliği uygulamalarının sosyal, çevresel, sağlık, güvenlik, hukuk boyutları ile proje yönetimi ve iş hayatı uygulamalarını bilir ve bunların elektrik ve elektronik mühendisliği uygulamalarına getirdiği kısıtların farkındadır. X
12 Verilerin toplanması, yorumlanması, duyurulması aşamalarında ve mesleki tüm etkinliklerde toplumsal, bilimsel ve etik değerleri gözetir. Araştırma ve yayın etiği ilkelerine uygun davranır. X

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest