İzmir Ekonomi Üniversitesi
  • TÜRKÇE

  • GRADUATE SCHOOL

    Ph.D. In Electrical-Electronics Engineering

    EEE 543 | Course Introduction and Application Information

    Course Name
    Basics of Wireless Communications
    Code
    Semester
    Theory
    (hour/week)
    Application/Lab
    (hour/week)
    Local Credits
    ECTS
    EEE 543
    Fall/Spring
    3
    0
    3
    7.5

    Prerequisites
    None
    Course Language
    English
    Course Type
    Elective
    Course Level
    Second Cycle
    Mode of Delivery -
    Teaching Methods and Techniques of the Course -
    National Occupation Classification -
    Course Coordinator -
    Course Lecturer(s)
    Assistant(s) -
    Course Objectives This course provides an overview on the protocols and architectures of existing and emerging wireless networks. Specifically, it involves the study of wireless networks working with existing protocols and new proposed protocols that are more suitable to the particular characteristics of the wireless technology.
    Learning Outcomes

    The students who succeeded in this course;

    • The basic principles of wireless communications.
    • How reflection, diffraction, and scattering contribute to path-loss.
    • The modeling of wireless channels and how to compute path-loss with different models.
    • The difference between frequency selective vs frequency flat channels.
    • Ad-hoc wireless networks
    • Basics of linear communications, in particular linear modulation Spread Spectrum.
    • Multiple antenna and space time communications
    • Fundamentals of cellular communications systems. Ad-hoc wireless networks
    Course Description Overview of wireless communications, path-loss shadowing, Wireless channels models, Basic digital modulation techniques over wireless channels.

     



    Course Category

    Core Courses
    Major Area Courses
    X
    Supportive Courses
    Media and Management Skills Courses
    Transferable Skill Courses

     

    WEEKLY SUBJECTS AND RELATED PREPARATION STUDIES

    Week Subjects Related Preparation Learning Outcome
    1 The wireless channel, physical modeling for wireless channel, input/output model of the wireless channel, time and frequency coherence, statistical channel models. Fundamentals of Wireless Communication. Cambridge, Tse, David, and Pramod Viswanath, Cambridge University Press, 2005. Ch(2)
    2 Point-to-point communication: detection, diversity and channel uncertainty. Part1 Fundamentals of Wireless Communication. Cambridge, Tse, David, and Pramod Viswanath, Cambridge University Press, 2005. Ch(3)
    3 Point-to-point communication: detection, diversity and channel uncertainty. Part2 Fundamentals of Wireless Communication. Cambridge, Tse, David, and Pramod Viswanath, Cambridge University Press, 2005. Ch(3)
    4 Cellular systems: multiple access and interference management. – part1 Fundamentals of Wireless Communication. Cambridge, Tse, David, and Pramod Viswanath, Cambridge University Press, 2005. Ch(3)
    5 Cellular systems: multiple access and interference management. – part2 Fundamentals of Wireless Communication. Cambridge, Tse, David, and Pramod Viswanath, Cambridge University Press, 2005. Ch(4)
    6 Capacity of wireless channels – part1 Fundamentals of Wireless Communication. Cambridge, Tse, David, and Pramod Viswanath, Cambridge University Press, 2005. Ch(4)
    7 Capacity of wireless channels – part2 Fundamentals of Wireless Communication. Cambridge, Tse, David, and Pramod Viswanath, Cambridge University Press, 2005. Ch(5)
    8 Multiuser capacity and opportunistic Fundamentals of Wireless Communication. Cambridge, Tse, David, and Pramod Viswanath, Cambridge University Press, 2005. Ch(5)
    9 Multiuser capacity and opportunistic communication - part 2 Fundamentals of Wireless Communication. Cambridge, Tse, David, and Pramod Viswanath, Cambridge University Press, 2005. Ch(6)
    10 MIMO I: spatial multiplexing and channel modeling – part1 Fundamentals of Wireless Communication. Cambridge, Tse, David, and Pramod Viswanath, Cambridge University Press, 2005. Ch(6)
    11 MIMO I: spatial multiplexing and channel modeling – part2 Fundamentals of Wireless Communication. Cambridge, Tse, David, and Pramod Viswanath, Cambridge University Press, 2005. Ch(7)
    12 MIMO II: Capacity and multiplexing architectures – part1 Fundamentals of Wireless Communication. Cambridge, Tse, David, and Pramod Viswanath, Cambridge University Press, 2005. Ch(7)
    13 MIMO III: diversity-multiplexing tradeoff and universal space-time codes Fundamentals of Wireless Communication. Cambridge, Tse, David, and Pramod Viswanath, Cambridge University Press, 2005. Ch(8)
    14 MIMO IV: multiuser communication Fundamentals of Wireless Communication. Cambridge, Tse, David, and Pramod Viswanath, Cambridge University Press, 2005. Ch(9)
    15 Review of the Semester  
    16 Review of the Semester  

     

    Course Notes/Textbooks The textbook referenced above and course slides
    Suggested Readings/Materials Related Research Papers

     

    EVALUATION SYSTEM

    Semester Activities Number Weigthing
    Participation
    Laboratory / Application
    Field Work
    Quizzes / Studio Critiques
    Portfolio
    Homework / Assignments
    Presentation / Jury
    1
    20
    Project
    1
    40
    Seminar / Workshop
    Oral Exams
    Midterm
    Final Exam
    1
    40
    Total

    Weighting of Semester Activities on the Final Grade
    2
    60
    Weighting of End-of-Semester Activities on the Final Grade
    1
    40
    Total

    ECTS / WORKLOAD TABLE

    Semester Activities Number Duration (Hours) Workload
    Theoretical Course Hours
    (Including exam week: 16 x total hours)
    16
    3
    48
    Laboratory / Application Hours
    (Including exam week: '.16.' x total hours)
    16
    0
    Study Hours Out of Class
    16
    5
    80
    Field Work
    0
    Quizzes / Studio Critiques
    0
    Portfolio
    0
    Homework / Assignments
    0
    Presentation / Jury
    1
    45
    45
    Project
    1
    50
    50
    Seminar / Workshop
    0
    Oral Exam
    0
    Midterms
    0
    Final Exam
    1
    2
    2
        Total
    225

     

    COURSE LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS RELATIONSHIP

    #
    PC Sub Program Competencies/Outcomes
    * Contribution Level
    1
    2
    3
    4
    5
    1 Accesses information in breadth and depth by conducting scientific research in Electrical and Electronics Engineering; evaluates, interprets and applies information.
    -
    X
    -
    -
    -
    2 Is well-informed about contemporary techniques and methods used in Electrical and Electronics Engineering and their limitations.
    -
    -
    X
    -
    -
    3 Uses scientific methods to complete and apply information from uncertain, limited or incomplete data; can combine and use information from different disciplines. Knows and applies the research methods in studies of the area with a high level of skill.
    -
    -
    X
    -
    -
    4 Is informed about new and upcoming applications in the field and learns them whenever necessary.
    -
    -
    X
    -
    -
    5 Defines and formulates problems related to Electrical and Electronics Engineering, develops methods to solve them and uses progressive methods in solutions. Can independently realize novel studies that bring innovation to the field, or methods, or design, or known methods.
    -
    -
    -
    -
    X
    6 Develops novel and/or original methods, designs complex systems or processes and develops progressive/alternative solutions in designs.
    -
    -
    X
    -
    -
    7 Designs and implements studies based on theory, experiments and modeling; analyses and resolves the complex problems that arise in this process. Performs critical analysis, synthesis and evaluation of new and complex ideas.
    -
    -
    X
    -
    -
    8 Can work effectively in interdisciplinary teams as well as teams of the same discipline, can lead such teams and can develop approaches for resolving complex situations; can work independently and takes responsibility.
    -
    -
    X
    -
    -
    9 Engages in written and oral communication at least in Level C1 of the European Language Portfolio Global Scale.
    -
    -
    X
    -
    -
    10 Communicates the process and the results of his/her studies in national and international venues systematically, clearly and in written or oral form.
    X
    -
    -
    -
    -
    11 Evaluates the results of scientific, technological and engineering research and development activities in terms of the social, environmental, health, safety and legal aspects. Examines social relations and norms related to the field, and develops and makes attempts to change them if necessary. Knows their project management and business applications, and is aware of their limitations in Electrical and Electronics Engineering applications.
    X
    -
    -
    -
    -
    12 Highly regards scientific and ethical values in data collection, interpretation, communication and in every professional activity. Adheres to the principles of research and publication ethics.
    X
    -
    -
    -
    -

    *1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest

     


    NEW GÜZELBAHÇE CAMPUS

    Details

    GLOBAL CAREER

    As Izmir University of Economics transforms into a world-class university, it also raises successful young people with global competence.

    More..

    CONTRIBUTION TO SCIENCE

    Izmir University of Economics produces qualified knowledge and competent technologies.

    More..

    VALUING PEOPLE

    Izmir University of Economics sees producing social benefit as its reason for existence.

    More..

    BENEFIT TO SOCIETY

    Transferring 22 years of power and experience to social work…

    More..
    You are one step ahead with your graduate education at Izmir University of Economics.