İzmir Ekonomi Üniversitesi
  • TÜRKÇE

  • GRADUATE SCHOOL

    M.SC. In Industrial Engineering (With Thesis)

    MATH 658 | Course Introduction and Application Information

    Course Name
    Advanced Data Analysis
    Code
    Semester
    Theory
    (hour/week)
    Application/Lab
    (hour/week)
    Local Credits
    ECTS
    MATH 658
    Fall/Spring
    3
    0
    3
    7.5

    Prerequisites
    None
    Course Language
    English
    Course Type
    Elective
    Course Level
    Third Cycle
    Mode of Delivery -
    Teaching Methods and Techniques of the Course Application: Experiment / Laboratory / Workshop
    Lecture / Presentation
    National Occupation Classification -
    Course Coordinator
    Course Lecturer(s)
    Assistant(s) -
    Course Objectives The main objective of this course is to provide a basic understanding of data analysis concepts and to use it in applications with using some statistical software packages. The course will cover basic approaches in statistical inference and data mining, as well as modeling.
    Learning Outcomes

    The students who succeeded in this course;

    • will be able to use graphical methods to describe and summarize data
    • will be able to analyze relationships between variables
    • will be able to model relationships between variables using regression models
    • will be able to compare population means
    • will be able to test hypotheses
    • will be able to discuss the basic concepts of Data Mining
    Course Description

     



    Course Category

    Core Courses
    Major Area Courses
    Supportive Courses
    Media and Management Skills Courses
    Transferable Skill Courses

     

    WEEKLY SUBJECTS AND RELATED PREPARATION STUDIES

    Week Subjects Related Preparation Learning Outcome
    1 Introduction to data analysis, data science, data scientist, data scientist’s toolbox, SPSS, introduction to R environment R for Data Science, H. Wickham, G. Grolemund, (Ch-1, Ch-2), Introductory Statistics with R, P. Dalgaard (Ch-1)
    2 Data structures in R, built-in functions, R packages Introductory Statistics with R, P. Dalgaard (Ch-1)
    3 Random data, density and distribution functions, data import and export, data manipulation Introductory Statistics with R, P. Dalgaard (Ch-3)
    4 Control structures, conditional statements Introductory Statistics with R, P. Dalgaard (Ch-1.2)
    5 Quantitative methods to describe data, relationships between several variables Introductory Statistics with R, P. Dalgaard (Ch-4)
    6 Data visualization, graphical methods to describe data, base graphics system in R, basic graphs Introductory Statistics with R, P. Dalgaard (Ch-4.2)
    7 Advanced graphics in R -1, tidyverse syntax, Advanced graphics in R -2, ggplot2 R for Data Science, H. Wickham, G. Grolemund, (Ch-3)
    8 Midterm Exam
    9 Hypothesis testing, two-sample tests Introductory Statistics with R, P. Dalgaard (Ch-5)
    10 Hypothesis testing, two-sample tests Introductory Statistics with R, P. Dalgaard (Ch-5)
    11 Checking assumptions, goodness of fit tests Introductory Statistics with R, P. Dalgaard (Ch-5)
    12 Simple lineer regression and correlation Introductory Statistics with R, P. Dalgaard (Ch-6)
    13 Dynamic reporting R for Data Science, H. Wickham, G. Grolemund, (Ch-27)
    14 Data mining, basic concepts of statistical learning, supervised learning, unsupervised learning R for Data Science, H. Wickham, G. Grolemund, (Ch-22)
    15 Semester Review
    16 Final Exam

     

    Course Notes/Textbooks

    1- Introductory Statistics with R, P. Dalgaard, Springer, 2008. ISBN-13: 978-0-387-79054-1. (https://link.springer.com/book/10.1007/978-0-387-79054-1#toc)

     

    2- R for Data Science, H. Wickham, G. Grolemund, 978-1491910399. (https://r4ds.had.co.nz/)

    Suggested Readings/Materials

    1- R in Action: Data Analysis and Graphics with R. 2nd Ed., R. Kabacoff, 2015. 978-1617291388.

     

    2- Practical Data Science with R, N. Zumel and J. Mount, Manning Publications, 2014. 9781617291562.

     

    EVALUATION SYSTEM

    Semester Activities Number Weigthing
    Participation
    Laboratory / Application
    Field Work
    Quizzes / Studio Critiques
    Portfolio
    Homework / Assignments
    Presentation / Jury
    1
    10
    Project
    1
    20
    Seminar / Workshop
    Oral Exams
    Midterm
    1
    30
    Final Exam
    1
    40
    Total

    Weighting of Semester Activities on the Final Grade
    3
    60
    Weighting of End-of-Semester Activities on the Final Grade
    1
    40
    Total

    ECTS / WORKLOAD TABLE

    Semester Activities Number Duration (Hours) Workload
    Theoretical Course Hours
    (Including exam week: 16 x total hours)
    16
    3
    48
    Laboratory / Application Hours
    (Including exam week: '.16.' x total hours)
    16
    0
    Study Hours Out of Class
    14
    4
    56
    Field Work
    0
    Quizzes / Studio Critiques
    0
    Portfolio
    0
    Homework / Assignments
    0
    Presentation / Jury
    1
    23
    23
    Project
    1
    28
    28
    Seminar / Workshop
    0
    Oral Exam
    0
    Midterms
    1
    30
    30
    Final Exam
    1
    40
    40
        Total
    225

     

    COURSE LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS RELATIONSHIP

    #
    PC Sub Program Competencies/Outcomes
    * Contribution Level
    1
    2
    3
    4
    5
    1

    To have an appropriate knowledge of methodological and practical elements of the basic sciences and to be able to apply this knowledge in order to describe engineering-related problems in the context of industrial systems.

    -
    -
    -
    -
    -
    2

    To be able to identify, formulate and solve Industrial Engineering-related problems by using state-of-the-art methods, techniques and equipment.

    -
    -
    -
    -
    -
    3

    To be able to use techniques and tools for analyzing and designing industrial systems with a commitment to quality.

    -
    -
    -
    -
    -
    4

    To be able to conduct basic research and write and publish articles in related conferences and journals.

    -
    -
    -
    -
    -
    5

    To be able to carry out tests to measure the performance of industrial systems, analyze and interpret the subsequent results.

    -
    -
    -
    -
    -
    6

    To be able to manage decision-making processes in industrial systems.

    -
    -
    -
    -
    -
    7

    To have an aptitude for life-long learning; to be aware of new and upcoming applications in the field and to be able to learn them whenever necessary.

    -
    -
    -
    -
    -
    8

    To have the scientific and ethical values within the society in the collection, interpretation, dissemination, containment and use of the necessary technologies related to Industrial Engineering.

    -
    -
    -
    -
    -
    9

    To be able to design and implement studies based on theory, experiments and modeling; to be able to analyze and resolve the complex problems that arise in this process; to be able to prepare an original thesis that comply with Industrial Engineering criteria.

    -
    -
    -
    -
    -
    10

    To be able to follow information about Industrial Engineering in a foreign language; to be able to present the process and the results of his/her studies in national and international venues systematically, clearly and in written or oral form.

    -
    -
    -
    -
    -

    *1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest

     


    NEW GÜZELBAHÇE CAMPUS

    Details

    GLOBAL CAREER

    As Izmir University of Economics transforms into a world-class university, it also raises successful young people with global competence.

    More..

    CONTRIBUTION TO SCIENCE

    Izmir University of Economics produces qualified knowledge and competent technologies.

    More..

    VALUING PEOPLE

    Izmir University of Economics sees producing social benefit as its reason for existence.

    More..

    BENEFIT TO SOCIETY

    Transferring 22 years of power and experience to social work…

    More..
    You are one step ahead with your graduate education at Izmir University of Economics.