LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ

Uygulamalı Matematik ve İstatistik (Doktora)

MATH 655 | Ders Tanıtım Bilgileri

Dersin Adı
Bulanık Küme Teorisi ve Uygulamaları
Kodu
Yarıyıl
Teori
(saat/hafta)
Uygulama/Lab
(saat/hafta)
Yerel Kredi
AKTS
MATH 655
Güz/Bahar
3
0
3
7.5

Ön-Koşul(lar)
Yok
Dersin Dili
İngilizce
Dersin Türü
Seçmeli
Dersin Düzeyi
Doktora
Dersin Veriliş Şekli -
Dersin Öğretim Yöntem ve Teknikleri -
Dersin Koordinatörü -
Öğretim Eleman(lar)ı
Yardımcı(ları) -
Dersin Amacı Bulanık Küme Teorisi, karışık, karmaşık, belirsiz veya doğrusal olmayan sistemleri veya kolaylıkla klasik küme teorisi ya da olasılık teorisi ile çözülemeyen problemleri çözmede kullanılır. Bu derste Bulanık küme teorisi ve bulanık mantığın temeli incelenir. Ayrıca bu ders, aynı zamanda pek çok alanda bulanık kontrol ve bulanık karar verme gibi bulanık mantık uygulamalarını açıklar.
Öğrenme Çıktıları Bu dersi başarıyla tamamlayabilen öğrenciler;
  • Bulanık küme teorisi kapsamında bulanıklık içeren sistemleri yorumlayabilir
  • Bulanık mantık kulllanarak karar problemlerini çözebilir.
  • Bulanık Kontrol sistemlerini inceleyebilir
  • Yeni bulanık sistemler geliştirebilir.
  • Olasılık teorisi ile Bulanık küme teorisi arasındaki ilişkiyi ifade edebilir.
Ders Tanımı Bu derste Bulanık Küme Teorisi temel kavram ve uygulamaları incelenecektir.

 



Dersin Kategorisi

Temel Ders
X
Uzmanlık/Alan Dersleri
Destek Dersleri
İletişim ve Yönetim Becerileri Dersleri
Aktarılabilir Beceri Dersleri

 

HAFTALIK KONULAR VE İLGİLİ ÖN HAZIRLIK ÇALIŞMALARI

Hafta Konular Ön Hazırlık
1 Bulanık Kümeler Temel Tanımlar H.J. Zimmermann,”Fuzzy set theory and its applications”, 3 ed. Norwell, MA:Kluwer, 1996.
2 Uzantılar H.J. Zimmermann,”Fuzzy set theory and its applications”, 3 ed. Norwell, MA:Kluwer, 1996.
3 Bulanık Ölçüler ve Bulaknıklığın Ölçüleri H.J. Zimmermann,”Fuzzy set theory and its applications”, 3 ed. Norwell, MA:Kluwer, 1996.
4 Uzatma ilkesi ve uygulamarı H.J. Zimmermann,”Fuzzy set theory and its applications”, 3 ed. Norwell, MA:Kluwer, 1996.
5 Bulanık İlişkiler ve Bulanık Grafikler H.J. Zimmermann,”Fuzzy set theory and its applications”, 3 ed. Norwell, MA:Kluwer, 1996.
6 Bulanık Analizi H.J. Zimmermann,”Fuzzy set theory and its applications”, 3 ed. Norwell, MA:Kluwer, 1996.
7 İmkan Teorisi, Olasılık Teorisi ve Bulanık Küme Teorisi H.J. Zimmermann,”Fuzzy set theory and its applications”, 3 ed. Norwell, MA:Kluwer, 1996.
8 Bulanık Mantık H.J. Zimmermann,”Fuzzy set theory and its applications”, 3 ed. Norwell, MA:Kluwer, 1996.
9 Yaklaşık Muhakeme H.J. Zimmermann,”Fuzzy set theory and its applications”, 3 ed. Norwell, MA:Kluwer, 1996.
10 Bulanık Kümeler ve Uzman Sistemler H.J. Zimmermann,”Fuzzy set theory and its applications”, 3 ed. Norwell, MA:Kluwer, 1996.
11 Bulanık Kontrol H.J. Zimmermann,”Fuzzy set theory and its applications”, 3 ed. Norwell, MA:Kluwer, 1996.
12 Bulanık Veri Analizi H.J. Zimmermann,”Fuzzy set theory and its applications”, 3 ed. Norwell, MA:Kluwer, 1996.
13 Bulanık Ortamlarda Karar Verme H.J. Zimmermann,”Fuzzy set theory and its applications”, 3 ed. Norwell, MA:Kluwer, 1996.
14 Yöneylem Araştırmasında Bulanık Küme Modelleri H.J. Zimmermann,”Fuzzy set theory and its applications”, 3 ed. Norwell, MA:Kluwer, 1996.
15 Bulanık Küme Teorisi içinde Ampirik Araştırma H.J. Zimmermann,”Fuzzy set theory and its applications”, 3 ed. Norwell, MA:Kluwer, 1996.
16 Dönemin gözden geçirilmesi  

 

Ders Kitabı Yukarıda verilen kitapların bazı bölümlerinden ve alıştırmalardan faydalanılacaktır.
Önerilen Okumalar/Materyaller T. Terano, K. Asai, and M. Sugeno, Fuzzy systems theory and its applications,1 ed. San Diego, CA: Academic press, 1992, T. J. Ross, Fuzzy logic with engineering applications, 1 ed. New York, NY: McGrawHill, 1995.

 

DEĞERLENDİRME ÖLÇÜTLERİ

Yarıyıl Aktiviteleri Sayı Katkı Payı %
Katılım
Laboratuvar / Uygulama
Arazi Çalışması
Küçük Sınav / Stüdyo Kritiği
Portfolyo
Ödev
Sunum / Jüri Önünde Sunum
Proje
1
30
Seminer/Çalıştay
Sözlü Sınav
Ara Sınav
1
30
Final Sınavı
1
40
Toplam

Yarıyıl İçi Çalışmalarının Başarı Notuna Katkısı
60
Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı
40
Toplam

AKTS / İŞ YÜKÜ TABLOSU

Yarıyıl Aktiviteleri Sayı Süre (Saat) İş Yükü
Teorik Ders Saati
(Sınav haftası dahildir: 16 x teorik ders saati)
16
3
48
Laboratuvar / Uygulama Ders Saati
(Sınav haftası dahildir. 16 x uygulama/lab ders saati)
16
0
Sınıf Dışı Ders Çalışması
16
5
80
Arazi Çalışması
0
Küçük Sınav / Stüdyo Kritiği
0
Portfolyo
0
Ödev
0
Sunum / Jüri Önünde Sunum
0
Proje
1
25
25
Seminer/Çalıştay
0
Sözlü Sınav
0
Ara Sınavlar
1
32
32
Final Sınavı
1
40
40
    Toplam
225

 

DERSİN ÖĞRENME ÇIKTILARININ PROGRAM YETERLİLİKLERİ İLE İLİŞKİSİ

#
Program Yeterlilikleri / Çıktıları
* Katkı Düzeyi
1
2
3
4
5
1

Yüksek lisans düzeyi yeterliliklerine dayalı olarak, teorik matematik ve istatistik kuramları ve uygulamalarına ilişkin bilgilerini uzmanlık düzeyinde geliştirmek, , derinleştirmek ve alanına yenilik getirecek özgün tanımlara ulaştırmak,

X
2

Matematik ve İstatistikte orijinal, bağımsız ve kritik düşünme yeteneklerine sahip olmak ve teorik kavramlar geliştirebilmek,

X
3

Matematik ve İstatistikteki problemleri tanıyabilme ve doğrulayabilme yeteneğine sahip olmak,

X
4

Disiplinlerarası yaklaşımla, teorik ve uygulamalı matematik ve istatistik yöntemlerini yeni problemlerin analiz ve çözümümde uygulayabilmek ve uygulama konusunda kendi potansiyellerini keşfedebilmek,

X
5

Uygulamalı Matematiğin ve istatistiğin kullanıldığı hemen her alanda, uzmanlık gerektiren bir çalışmayı bağımsız olarak yürütebilmek, sonuçlandırıp, raporlayabilmek,

X
6

Uygulamalı Matematik ve İstatistik alanında edindiği uzmanlık düzeyindeki bilgi ve becerilerini eleştirel bir yaklaşımla değerlendirebilmek, yenileyebilmek, ve karmaşık düşüncelerin eleştirel analizini, sentezini ve değerlendirmesini yapabilmek,

X
7

Uygulamalı Matematik ve İstatistik alanında analizlerini ve önerdiği yöntemleri, uzman kişilere, bilimsel nitelikte aktarabilmek,

X
8

Ulusal ve uluslararası (İngilizce) akademik kaynakları etkin bir şekilde kullanabilmek ve bilgi birikimini güncel tutabilmek, yurtiçi ve yurtdışı meslektaşlarıyla rahat bir şekilde iletişim kurabilmek, periyodik litaretürü takip edebilmek, alanındaki ve alan dışındaki bilimsel toplantılara, yazılı, sözlü ve görsel olarak sistemli biçimde aktarımda bulunabilmek,

X
9

Uygulamalı Matematik ve İstatistik alanlarında yaygın olarak kullanılan yazılımlara aşina olmak ve en az ikisini etkin şekilde kullanabilmek,

X
10

Uygulamalı Matematik ve İstatistik alanlarında bilimsel, teknolojik, sosyal veya kültürel ilerlemeleri tanıtarak, yaşadığı toplumun bilgi toplumu olma ve bunu sürdürebilme sürecine katkıda bulunmak,

X
11

Evrensel anlamda birikimli ve duyarlı olarak tüm süreçleri etkin şekilde değerlendirebilmek, karşılaştığı toplumsal, bilimsel, kültürel ve etik sorunların çözümüne katkıda bulunup ve bu değerlerin gelişimini desteklemek,

X
12

Soyut düşünce yapısına hakim olarak, somut olaylara bağlayabilmek ve çözümleri taşıyabilmek, deney tasarlayıp veri toplayarak bilimsel yöntemlerle sonuçları incelemek ve yorumlamak,

X
13

Matematik ve istatistiğn kullanıldığı sistem ve konularla ilgili strateji, politika ve planlar geliştirebilmek ve elde edilen sonuçları yorumlayıp geliştirebilmek,

X
14

Matematik ve İstatistik bilinmlerinin gelişmesinde ve kaynaşmasında  yer alan önemli kişileri, olay ve olguları, diğer bilim dallarının gelişmesindeki etkileri açısından değerlendirebilmek, tartışabilmek, inceleyebilmek,

X
15

Uygulamalı Matematik  ve İstatistik alanında bireysel veya ekip olarak bir bilimsel çalışmayı sürdürmek, bağımsız çalışmanın ilgili tüm aşamalarında etkili olmak, karar verme sürecine katılmak, zamanı etkili kullanarak gerekli planlamayı yapmak ve yürütmek.

X

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest

 


İzmir Ekonomi Üniversitesi
izto logo
İzmir Ticaret Odası Eğitim ve Sağlık Vakfı
kuruluşudur.
ieu logo

Sakarya Caddesi No:156
35330 Balçova - İzmir / TÜRKİYE

kampus izmir

Bizi Takip edin

İEU © Tüm hakları saklıdır.